
©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 2 Slide 1

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Socio-technical Systems

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 2 Slide 2

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Objectives

To explain what a socio-technical system is and the
distinction between this and a computer-based system
To introduce the concept of emergent system properties
such as reliability and security
To explain system engineering and system procurement
processes
To explain why the organisational context of a system
affects its design and use
To discuss legacy systems and why these are critical to
many businesses

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 2 Slide 3

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Topics covered

Emergent system properties
Systems engineering
Organizations, people and computer systems
Legacy systems

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 2 Slide 4

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

What is a system?

A purposeful collection of inter-related components
working together to achieve some common objective.
A system may include software, mechanical, electrical
and electronic hardware and be operated by people.
System components are dependent on other
system components
The properties and behaviour of system components are
inextricably inter-mingled

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 2 Slide 5

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

System categories

Technical computer-based systems
• Systems that include hardware and software but

where the operators and operational processes are
not normally considered to be part of the system.
The system is not self-aware.

Socio-technical systems
• Systems that include technical systems but also

operational processes and people who use and
interact with the technical system. Socio-technical
systems are governed by organisational policies and
rules.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 2 Slide 6

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Socio-technical system characteristics
Emergent properties
• Properties of the system of a whole that depend on the system

components and their relationships.

Non-deterministic
• They do not always produce the same output when presented

with the same input because the systems’s behaviour is
partially dependent on human operators.

Complex relationships with organisational objectives
• The extent to which the system supports organisational

objectives does not just depend on the system itself.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 2 Slide 7

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Emergent properties

Properties of the system as a whole rather than
properties that can be derived from the
properties of components of a system
Emergent properties are a consequence of the
relationships between system components
They can therefore only be assessed and
measured once the components have been
integrated into a system

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 2 Slide 8

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Examples of emergent properties

Property Description

Volume The volume of a system (the total space occupied) varies depend ing on how the
component assemblies are arranged and connected.

Reliability System reliability depends on component reliability but unexpected interactions can
cause new types of failure and therefore affect the reliability of the system.

Security The security of the system (its ability to resist attack) is a complex property that
cannot be easily measured. Attacks may be devised that were not anticipated by the
system designers and so may defeat built-in safeguards.

Repairability This property reflects how easy it is to fix a problem with the system once it has been
discovered. It depends on being able to diagnose the problem, access the components
that are faulty and modify or replace these components.

Usability This property reflects how easy it is to use the system. It depends on the technical
system components, its operators and its operating environment.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 2 Slide 9

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Types of emergent property

Functional properties
• These appear when all the parts of a system work together to

achieve some objective. For example, a bicycle has the
functional property of being a transportation device once it has
been assembled from its components.

Non-functional emergent properties
• Examples are reliability, performance, safety, and security.

These relate to the behaviour of the system in its operational
environment. They are often critical for computer-based
systems as failure to achieve some minimal defined level in
these properties may make the system unusable.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 2 Slide 10

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Because of component inter-dependencies,
faults can be propagated through the system.
System failures often occur because of
unforeseen inter-relationships between
components.
It is probably impossible to anticipate all
possible component relationships.
Software reliability measures may give a false
picture of the system reliability.

System reliability engineering

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 2 Slide 11

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Hardware reliability
• What is the probability of a hardware component failing and

how long does it take to repair that component?

Software reliability
• How likely is it that a software component will produce an

incorrect output. Software failure is usually distinct from
hardware failure in that software does not wear out.

Operator reliability
• How likely is it that the operator of a system will make an error?

Influences on reliability

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 2 Slide 12

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Reliability relationships

Hardware failure can generate spurious signals
that are outside the range of inputs expected by
the software.
Software errors can cause alarms to be activated
which cause operator stress and lead to operator
errors.
The environment in which a system is installed
can affect its reliability.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 2 Slide 13

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

The ‘shall-not’ properties

Properties such as performance and reliability
can be measured.
However, some properties are properties that the
system should not exhibit
• Safety - the system should not behave in an unsafe

way;
• Security - the system should not permit unauthorised

use.
Measuring or assessing these properties is very
hard.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 2 Slide 14

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Systems engineering

Specifying, designing, implementing, validating,
deploying and maintaining socio-technical
systems.
Concerned with the services provided by the
system, constraints on its construction and
operation and the ways in which it is used.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 2 Slide 15

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

The system engineering process

Usually follows a ‘waterfall’ model because of the need
for parallel development of different parts of the system
• Little scope for iteration between phases because hardware

changes are very expensive. Software may have to
compensate for hardware problems.

Inevitably involves engineers from different disciplines
who must work together
• Much scope for misunderstanding here. Different disciplines

use a different vocabulary and much negotiation is required.
Engineers may have personal agendas to fulfil.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 2 Slide 16

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

The systems engineering process

System

integration

Sub-system

development

System

design

Requirements

definition

System

installation

System

evolution

System

decommissioning

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 2 Slide 17

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Inter-disciplinary involvement

ATC systems

engineering

Electronic

engineering

Electrical

engineering

User interface

design

Mechanical

engineering

Architecture

Structural

engineering

Software

engineering

Civil

engineering

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 2 Slide 18

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

System requirements definition

Three types of requirement defined at this stage
• Abstract functional requirements. System functions

are defined in an abstract way;
• System properties. Non-functional requirements for

the system in general are defined;
• Undesirable characteristics. Unacceptable system

behaviour is specified.
Should also define overall organisational
objectives for the system.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 2 Slide 19

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

System objectives

Should define why a system is being procured
for a particular environment.
Functional objectives
• To provide a fire and intruder alarm system for the

building which will provide internal and external
warning of fire or unauthorized intrusion.

Organisational objectives
• To ensure that the normal functioning of work carried

out in the building is not seriously disrupted by
events such as fire and unauthorized intrusion.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 2 Slide 20

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

System requirements problems

Complex systems are usually developed to
address wicked problems
• Problems that are not fully understood;
• Changing as the system is being specified.

Must anticipate hardware/communications
developments over the lifetime of the system.
Hard to define non-functional requirements
(particularly) without knowing the
component structure of the system.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 2 Slide 21

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

The system design process

Partition requirements
• Organise requirements into related groups.

Identify sub-systems
• Identify a set of sub-systems which collectively can meet the

system requirements.

Assign requirements to sub-systems
• Causes particular problems when COTS are integrated.

Specify sub-system functionality.
Define sub-system interfaces
• Critical activity for parallel sub-system development.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 2 Slide 22

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

The system design process

Partition
requirements

Identify
sub-systems

Assign requirements
to sub-systems

Specify sub-system
functionality

Define sub-system
interfaces

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 2 Slide 23

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

System design problems

Requirements partitioning to hardware,
software and human components may involve a
lot of negotiation.
Difficult design problems are often assumed to
be readily solved using software.
Hardware platforms may be inappropriate for
software requirements so software must
compensate for this.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 2 Slide 24

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Requirements and design

Requirements engineering and system design
are inextricably linked.
Constraints posed by the system’s environment
and other systems limit design choices so the
actual design to be used may be a requirement.
Initial design may be necessary to structure the
requirements.
As you do design, you learn more about the
requirements.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 2 Slide 25

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Spiral model of requirements/design

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 2 Slide 26

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

System modelling

An architectural model presents an abstract view
of the sub-systems making up a system
May include major information flows between
sub-systems
Usually presented as a block diagram
May identify different types of functional
component in the model

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 2 Slide 27

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Burglar alarm system

Alarm
controller

Voice
synthesiser

Movement
sensors

Siren

Door
sensors

Telephone
caller

External
control centre

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 2 Slide 28

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Sub-system description

Sub-system Description

Movement sensors Detects movement in the rooms monitored by the system

Door sensors Detects door opening in the external doors of the building

Alarm controller Controls the operation of the system

Siren Emits an audible warning when an intruder is suspected

Voice synthesizer Synthesizes a voice message giving the location of the suspected intruder

Telephone caller Makes external calls to notify security, the police, etc.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 2 Slide 29

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

ATC system architecture

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 2 Slide 30

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Sub-system development

Typically parallel projects developing the
hardware, software and communications.
May involve some COTS (Commercial Off-the-Shelf)
systems procurement.
Lack of communication across implementation
teams.
Bureaucratic and slow mechanism for
proposing system changes means that the development
schedule may be extended because of the need for
rework.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 2 Slide 31

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

The process of putting hardware, software and
people together to make a system.
Should be tackled incrementally so that sub-
systems are integrated one at a time.
Interface problems between sub-systems are
usually found at this stage.
May be problems with uncoordinated deliveries
of system components.

System integration

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 2 Slide 32

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

After completion, the system has to be installed
in the customer’s environment
• Environmental assumptions may be incorrect;
• May be human resistance to the introduction of

a new system;
• System may have to coexist with alternative

systems for some time;
• May be physical installation problems (e.g.

cabling problems);
• Operator training has to be identified.

System installation

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 2 Slide 33

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

System evolution

Large systems have a long lifetime. They must evolve to
meet changing requirements.
Evolution is inherently costly
• Changes must be analysed from a technical and business

perspective;
• Sub-systems interact so unanticipated problems can arise;
• There is rarely a rationale for original design decisions;
• System structure is corrupted as changes are made to it.

Existing systems which must be maintained are
sometimes called legacy systems.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 2 Slide 34

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

System decommissioning

Taking the system out of service after its useful
lifetime.
May require removal of materials (e.g.
dangerous chemicals) which pollute the
environment
• Should be planned for in the system design by

encapsulation.
May require data to be restructured and
converted to be used in some other system.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 2 Slide 35

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Organisations/people/systems

Socio-technical systems are organisational
systems intended to help deliver some
organisational or business goal.
If you do not understand the organisational
environment where a system is used, the system
is less likely to meet the real needs of the
business and its users.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 2 Slide 36

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Human and organisational factors

Process changes
• Does the system require changes to the work

processes in the environment?

Job changes
• Does the system de-skill the users in an environment or

cause them to change the way they work?

Organisational changes
• Does the system change the political power structure in

an organisation?

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 2 Slide 37

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Organisational processes

The processes of systems engineering overlap and
interact with organisational procurement processes.
Operational processes are the processes involved in
using the system for its intended purpose. For new
systems, these have to be defined as part of the system
design.
Operational processes should be designed to be flexible
and should not force operations to be done in a particular
way. It is important that human operators can use their
initiative if problems arise.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 2 Slide 38

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Procurement/development processes

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 2 Slide 39

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

System procurement

Acquiring a system for an organization to meet some
need
Some system specification and architectural design is
usually necessary before procurement
• You need a specification to let a contract for system

development
• The specification may allow you to buy a commercial off-the-

shelf (COTS) system. Almost always cheaper than developing
a system from scratch

Large complex systems usually consist of a mix of off the
shelf and specially designed components. The
procurement processes for these different types of
component are usually different.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 2 Slide 40

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

The system procurement process

Choose
supplier

Issue request
for bids

Choose
system

Adapt
requirements

Survey market for
existing systems

Let contract for
development

Negotiate
contract

Select
tender

Issue request
to tender

Off-the-shelf
system available

Custom system
required

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 2 Slide 41

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Procurement issues

Requirements may have to be modified to match
the capabilities of off-the-shelf components.
The requirements specification may be part of
the contract for the development of the system.
There is usually a contract negotiation period to
agree changes after the contractor to build a
system has been selected.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 2 Slide 42

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Contractors and sub-contractors

The procurement of large hardware/software
systems is usually based around some principal
contractor.
Sub-contracts are issued to other suppliers to
supply parts of the system.
Customer liases with the principal contractor and
does not deal directly with sub-contractors.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 2 Slide 43

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Contractor/Sub-contractor model

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 2 Slide 44

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Legacy systems

Socio-technical systems that have been developed using
old or obsolete technology.
Crucial to the operation of a business and it is often too
risky to discard these systems
• Bank customer accounting system;
• Aircraft maintenance system.

Legacy systems constrain new business processes and
consume a high proportion of company budgets.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 2 Slide 45

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

System
hardware

Business
processes

Application
software

Business policies
and rules

Support software

Application
 data

ConstrainsUsesUsesRuns-onRuns-on

Embeds
knowledge of

Uses

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 2 Slide 46

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Legacy system components

Hardware - may be obsolete mainframe hardware.
Support software - may rely on support software from
suppliers who are no longer in business.
Application software - may be written in obsolete
programming languages.
Application data - often incomplete and inconsistent.
Business processes - may be constrained by software
structure and functionality.
Business policies and rules - may be implicit and
embedded in the system software.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 2 Slide 47

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Socio-technical system

Hardware

Support software

Application software

Business processes

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 2 Slide 48

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Key points

Socio-technical systems include computer hardware,
software and people and are designed to meet some
business goal.
Emergent properties are properties that are characteristic
of the system as a whole and not its component parts.
The systems engineering process includes specification,
design, development, integration and testing. System
integration is particularly critical.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 2 Slide 49

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Key points

Human and organisational factors have a significant
effect on the operation of socio-technical systems.
There are complex interactions between the processes of
system procurement, development and operation.
A legacy system is an old system that continues to
provide essential services.
Legacy systems include business processes, application
software, support software and system hardware.

