
©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4 Slide 1
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Software Processes

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4 Slide 2
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Objectives

To introduce software process models
To describe three generic process models and
when they may be used
To describe outline process models for
requirements engineering, software
development, testing and evolution
To explain the Rational Unified Process model
To introduce CASE technology to support
software process activities

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4 Slide 3
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Topics covered

Software process models
Process iteration
Process activities
The Rational Unified Process
Computer-aided software engineering

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4 Slide 4
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

The software process

A structured set of activities required to develop a
software system
• Specification;
• Design;
• Validation;
• Evolution.

A software process model is an abstract representation
of a process. It presents a description of a process
from some particular perspective.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4 Slide 5
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Generic software process models
The waterfall model
• Separate and distinct phases of specification and

development.
Evolutionary development
• Specification, development and validation are

interleaved.
Component-based software engineering
• The system is assembled from existing components.

There are many variants of these models e.g. formal
development where a waterfall-like process is used but
the specification is a formal specification that is refined
through several stages to an implementable design.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4 Slide 6
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Waterfall model

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4 Slide 7
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Waterfall model phases

Requirements analysis and definition
System and software design
Implementation and unit testing
Integration and system testing
Operation and maintenance
The main drawback of the waterfall model is
the difficulty of accommodating change after
the process is underway. One phase has to be
complete before moving onto the next phase.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4 Slide 8
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Waterfall model problems

Inflexible partitioning of the project into distinct stages
makes it difficult to respond to changing customer
requirements.
Therefore, this model is only appropriate when the
requirements are well-understood and changes will be
fairly limited during the design process.
Few business systems have stable requirements.
The waterfall model is mostly used for large systems
engineering projects where a system is developed at
several sites.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4 Slide 9
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Evolutionary development

Exploratory development
• Objective is to work with customers and to evolve

a final system from an initial outline specification.
Should start with well-understood requirements
and add new features as proposed by the
customer.

Throw-away prototyping
• Objective is to understand the system

requirements. Should start with poorly understood
requirements to clarify what is really needed.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4 Slide 10
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Evolutionary development

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4 Slide 11
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Evolutionary development

Problems
• Lack of process visibility;
• Systems are often poorly structured;
• Special skills (e.g. in languages for rapid

prototyping) may be required.
Applicability
• For small or medium-size interactive systems;
• For parts of large systems (e.g. the user interface);
• For short-lifetime systems.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4 Slide 12
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Component-based software engineering

Based on systematic reuse where systems are
integrated from existing components or COTS
(Commercial-off-the-shelf) systems.
Process stages
• Component analysis;
• Requirements modification;
• System design with reuse;
• Development and integration.

This approach is becoming increasingly used
as component standards have emerged.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4 Slide 13
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Reuse-oriented development

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4 Slide 14
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Process iteration

System requirements ALWAYS evolve in the
course of a project so process iteration where
earlier stages are reworked is always part of
the process for large systems.
Iteration can be applied to any of the generic
process models.
Two (related) approaches
• Incremental delivery;
• Spiral development.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4 Slide 15
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Incremental delivery

Rather than deliver the system as a single delivery, the
development and delivery is broken down into
increments with each increment delivering part of the
required functionality.
User requirements are prioritised and the highest
priority requirements are included in early increments.
Once the development of an increment is started, the
requirements are frozen though requirements for later
increments can continue to evolve.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4 Slide 16
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Incremental development

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4 Slide 17
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Incremental development advantages

Customer value can be delivered with each
increment so system functionality is available
earlier.
Early increments act as a prototype to help
elicit requirements for later increments.
Lower risk of overall project failure.
The highest priority system services tend to
receive the most testing.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4 Slide 18
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Extreme programming

An approach to development based on the
development and delivery of very small
increments of functionality.
Relies on constant code improvement, user
involvement in the development team and
pairwise programming.
Covered in Chapter 17

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4 Slide 19
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Spiral development

Process is represented as a spiral rather than
as a sequence of activities with backtracking.
Each loop in the spiral represents a phase in
the process.
No fixed phases such as specification or
design - loops in the spiral are chosen
depending on what is required.
Risks are explicitly assessed and resolved
throughout the process.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4 Slide 20
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Spiral model of the software process

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4 Slide 21
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Spiral model sectors

Objective setting
• Specific objectives for the phase are identified.

Risk assessment and reduction
• Risks are assessed and activities put in place to reduce

the key risks.
Development and validation
• A development model for the system is chosen which

can be any of the generic models.
Planning
• The project is reviewed and the next phase of the spiral

is planned.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4 Slide 22
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Process activities

Software specification
Software design and implementation
Software validation
Software evolution

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4 Slide 23
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Software specification

The process of establishing what services are
required and the constraints on the system’s
operation and development.
Requirements engineering process
• Feasibility study;
• Requirements elicitation and analysis;
• Requirements specification;
• Requirements validation.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4 Slide 24
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

The requirements engineering process

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4 Slide 25
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Software design and implementation

The process of converting the system
specification into an executable system.
Software design
• Design a software structure that realises the

specification;
Implementation
• Translate this structure into an executable

program;
The activities of design and implementation
are closely related and may be inter-leaved.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4 Slide 26
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Design process activities

Architectural design
Abstract specification
Interface design
Component design
Data structure design
Algorithm design

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4 Slide 27
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

The software design process

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4 Slide 28
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Structured methods

Systematic approaches to developing a
software design.
The design is usually documented as a set of
graphical models.
Possible models
• Object model;
• Sequence model;
• State transition model;
• Structural model;
• Data-flow model.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4 Slide 29
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Programming and debugging

Translating a design into a program and
removing errors from that program.
Programming is a personal activity - there is
no generic programming process.
Programmers carry out some program testing
to discover faults in the program and remove
these faults in the debugging process.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4 Slide 30
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

The debugging process

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4 Slide 31
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Software validation

Verification and validation (V & V) is intended
to show that a system conforms to its
specification and meets the requirements of
the system customer.
Involves checking and review processes and
system testing.
System testing involves executing the system
with test cases that are derived from the
specification of the real data to be processed
by the system.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4 Slide 32
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

The testing process

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4 Slide 33
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Testing stages

Component or unit testing
• Individual components are tested independently;
• Components may be functions or objects or

coherent groupings of these entities.
System testing
• Testing of the system as a whole. Testing of

emergent properties is particularly important.
Acceptance testing
• Testing with customer data to check that the

system meets the customer’s needs.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4 Slide 34
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Testing phases

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4 Slide 35
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Software evolution

Software is inherently flexible and can change.
As requirements change through changing
business circumstances, the software that
supports the business must also evolve and
change.
Although there has been a demarcation
between development and evolution
(maintenance) this is increasingly irrelevant as
fewer and fewer systems are completely new.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4 Slide 36
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

System evolution

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4 Slide 37
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

The Rational Unified Process

A modern process model derived from the
work on the UML and associated process.
Normally described from 3 perspectives
• A dynamic perspective that shows phases over

time;
• A static perspective that shows process activities;
• A practive perspective that suggests good

practice.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4 Slide 38
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

RUP phase model

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4 Slide 39
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

RUP phases

Inception
• Establish the business case for the system.

Elaboration
• Develop an understanding of the problem domain

and the system architecture.
Construction
• System design, programming and testing.

Transition
• Deploy the system in its operating environment.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4 Slide 40
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

RUP good practice

Develop software iteratively
Manage requirements
Use component-based architectures
Visually model software
Verify software quality
Control changes to software

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4 Slide 41
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Static workflows

Workflow Description

Business modelling The business processes are modelled using business use cases.

Requirements Actors who interact with the system are identified and use cases are
developed to model the system requirements.

Analysis and design A design model is created and documented using architectural
models, component models, object models and sequence models.

Implementation The components in the system are implemented and structured into
implementation sub-systems. Automatic code generation from design
models helps accelerate this process.

Test Testing is an iterative process that is carried out in conjunction with
implementation. System testing follows the completion of the
implementation.

Deployment A product release is created, distributed to users and installed in their
workplace.

Configuration and
change management

This supporting workflow managed changes to the system (see
Chapter 29).

Project management This supporting workflow manages the system development (see
Chapter 5).

Environment This workflow is concerned with making appropriate software tools
available to the software development team.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4 Slide 42
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Computer-aided software engineering

Computer-aided software engineering (CASE) is
software to support software development and
evolution processes.
Activity automation
• Graphical editors for system model development;
• Data dictionary to manage design entities;
• Graphical UI builder for user interface construction;
• Debuggers to support program fault finding;
• Automated translators to generate new versions of a

program.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4 Slide 43
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Case technology

Case technology has led to significant
improvements in the software process.
However, these are not the order of magnitude
improvements that were once predicted
• Software engineering requires creative thought -

this is not readily automated;
• Software engineering is a team activity and, for

large projects, much time is spent in team
interactions. CASE technology does not really
support these.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4 Slide 44
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

CASE classification

Classification helps us understand the different types
of CASE tools and their support for process activities.
Functional perspective
• Tools are classified according to their specific function.

Process perspective
• Tools are classified according to process activities that

are supported.
Integration perspective
• Tools are classified according to their organisation into

integrated units.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4 Slide 45
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Functional tool classification

Tool type Examples

Planning tools PERT tools, estimation tools, spreadsheets

Editing tools Text editors, diagram editors, word processors

Change management tools Requirements traceability tools, change control systems

Configuration management tools Version management systems, system building tools

Prototyping tools Very high-level languages, user interface generators

Method-support tools Design editors, data dictionaries, code generators

Language-processing tools Compilers, interpreters

Program analysis tools Cross reference generators, static analysers, dynamic analysers

Testing tools Test data generators, file comparators

Debugging tools Interactive debugging systems

Documentation tools Page layout programs, image editors

Re-engineering tools Cross-reference systems, program re-structuring systems

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4 Slide 46
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Activity-based tool classification

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4 Slide 47
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

CASE integration

Tools
• Support individual process tasks such as design

consistency checking, text editing, etc.
Workbenches
• Support a process phase such as specification or

design, Normally include a number of integrated
tools.

Environments
• Support all or a substantial part of an entire

software process. Normally include several
integrated workbenches.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4 Slide 48
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Tools, workbenches, environments

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4 Slide 49
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Key points

Software processes are the activities involved in
producing and evolving a software system.
Software process models are abstract representations
of these processes.
General activities are specification, design and
implementation, validation and evolution.
Generic process models describe the organisation of
software processes. Examples include the waterfall
model, evolutionary development and component-
based software engineering.
Iterative process models describe the software process
as a cycle of activities.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4 Slide 50
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Key points

Requirements engineering is the process of developing
a software specification.
Design and implementation processes transform the
specification to an executable program.
Validation involves checking that the system meets to
its specification and user needs.
Evolution is concerned with modifying the system after
it is in use.
The Rational Unified Process is a generic process
model that separates activities from phases.
CASE technology supports software process activities.

