
©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 10 Slide 1
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Formal Specification

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 10 Slide 2
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Objectives

To explain why formal specification
techniques help discover problems in system
requirements
To describe the use of algebraic techniques
for interface specification
To describe the use of model-based
techniques for behavioural specification

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 10 Slide 3
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Topics covered

Formal specification in the software process
Sub-system interface specification
Behavioural specification

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 10 Slide 4
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Formal methods

Formal specification is part of a more general
collection of techniques that are known as ‘formal
methods’.
These are all based on mathematical representation
and analysis of software.
Formal methods include
• Formal specification;
• Specification analysis and proof;
• Transformational development;
• Program verification.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 10 Slide 5
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Acceptance of formal methods

Formal methods have not become mainstream
software development techniques as was once
predicted
• Other software engineering techniques have been

successful at increasing system quality. Hence the need
for formal methods has been reduced;

• Market changes have made time-to-market rather than
software with a low error count the key factor. Formal
methods do not reduce time to market;

• The scope of formal methods is limited. They are not well-
suited to specifying and analysing user interfaces and
user interaction;

• Formal methods are still hard to scale up to large
systems.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 10 Slide 6
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Use of formal methods

The principal benefits of formal methods are
in reducing the number of faults in systems.
Consequently, their main area of applicability
is in critical systems engineering. There have
been several successful projects where
formal methods have been used in this area.
In this area, the use of formal methods is
most likely to be cost-effective because high
system failure costs must be avoided.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 10 Slide 7
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Specification in the software process

Specification and design are inextricably
intermingled.
Architectural design is essential to structure
a specification and the specification process.
Formal specifications are expressed in a
mathematical notation with precisely defined
vocabulary, syntax and semantics.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 10 Slide 8
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Specification and design

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 10 Slide 9
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Specification in the software process

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 10 Slide 10
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Use of formal specification

Formal specification involves investing more
effort in the early phases of software
development.
This reduces requirements errors as it forces
a detailed analysis of the requirements.
Incompleteness and inconsistencies can be
discovered and resolved.
Hence, savings as made as the amount of
rework due to requirements problems is
reduced.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 10 Slide 11
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Cost profile

The use of formal specification means that
the cost profile of a project changes
• There are greater up front costs as more time

and effort are spent developing the
specification;

• However, implementation and validation costs
should be reduced as the specification process
reduces errors and ambiguities in the
requirements.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 10 Slide 12
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Development costs with formal specification

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 10 Slide 13
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Specification techniques

Algebraic specification
• The system is specified in terms of its

operations and their relationships.
Model-based specification
• The system is specified in terms of a state

model that is constructed using mathematical
constructs such as sets and sequences.
Operations are defined by modifications to the
system’s state.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 10 Slide 14
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Formal specification languages

Sequential Concurrent

Algebraic Larch (Guttag et al., 1993)
},
OBJ (Futatsugi et al.,
1985)}

Lotos (Bolognesi and
Brinksma, 1987)},

Model-based Z (Spivey, 1992)}
VDM (Jones, 1980)}
B (Wordsworth, 1996)}

CSP (Hoare, 1985)}
Petri Nets (Peterson, 1981)}

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 10 Slide 15
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Interface specification

Large systems are decomposed into subsystems
with well-defined interfaces between these
subsystems.
Specification of subsystem interfaces allows
independent development of the different
subsystems.
Interfaces may be defined as abstract data types or
object classes.
The algebraic approach to formal specification is
particularly well-suited to interface specification as it
is focused on the defined operations in an object.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 10 Slide 16
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Sub-system interfaces

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 10 Slide 17
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

The structure of an algebraic specification

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 10 Slide 18
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Specification components

Introduction
• Defines the sort (the type name) and declares other

specifications that are used.
Description
• Informally describes the operations on the type.

Signature
• Defines the syntax of the operations in the interface and

their parameters.
Axioms
• Defines the operation semantics by defining axioms which

characterise behaviour.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 10 Slide 19
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Systematic algebraic specification

Algebraic specifications of a system may be
developed in a systematic way
• Specification structuring;
• Specification naming;
• Operation selection;
• Informal operation specification;
• Syntax definition;
• Axiom definition.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 10 Slide 20
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Specification operations

Constructor operations. Operations which
create entities of the type being specified.
Inspection operations. Operations which
evaluate entities of the type being specified.
To specify behaviour, define the inspector
operations for each constructor operation.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 10 Slide 21
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Operations on a list ADT

Constructor operations which evaluate to
sort List
• Create, Cons and Tail.

Inspection operations which take sort list as
a parameter and return some other sort
• Head and Length.

Tail can be defined using the simpler
constructors Create and Cons. No need to
define Head and Length with Tail.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 10 Slide 22
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

List specification

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 10 Slide 23
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Recursion in specifications

Operations are often specified recursively.
Tail (Cons (L, v)) = if L = Create then Create

else Cons (Tail (L), v).
• Cons ([5, 7], 9) = [5, 7, 9]
• Tail ([5, 7, 9]) = Tail (Cons ([5, 7], 9)) =
• Cons (Tail ([5, 7]), 9) = Cons (Tail (Cons ([5], 7)), 9) =
• Cons (Cons (Tail ([5]), 7), 9) =
• Cons (Cons (Tail (Cons ([], 5)), 7), 9) =
• Cons (Cons ([Create], 7), 9) = Cons ([7], 9) = [7, 9]

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 10 Slide 24
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Interface specification in critical systems

Consider an air traffic control system where aircraft
fly through managed sectors of airspace.
Each sector may include a number of aircraft but, for
safety reasons, these must be separated.
In this example, a simple vertical separation of 300m
is proposed.
The system should warn the controller if aircraft are
instructed to move so that the separation rule is
breached.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 10 Slide 25
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

A sector object

Critical operations on an object representing
a controlled sector are
• Enter. Add an aircraft to the controlled airspace;
• Leave. Remove an aircraft from the controlled

airspace;
• Move. Move an aircraft from one height to

another;
• Lookup. Given an aircraft identifier, return its

current height;

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 10 Slide 26
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Primitive operations

It is sometimes necessary to introduce additional
operations to simplify the specification.
The other operations can then be defined using
these more primitive operations.
Primitive operations
• Create. Bring an instance of a sector into existence;
• Put. Add an aircraft without safety checks;
• In-space. Determine if a given aircraft is in the sector;
• Occupied. Given a height, determine if there is an aircraft

within 300m of that height.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 10 Slide 27
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Sector specification (1)

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 10 Slide 28
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Sector specification (2)

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 10 Slide 29
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Specification commentary

Use the basic constructors Create and Put to
specify other operations.
Define Occupied and In-space using Create
and Put and use them to make checks in
other operation definitions.
All operations that result in changes to the
sector must check that the safety criterion
holds.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 10 Slide 30
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Behavioural specification

Algebraic specification can be cumbersome when
the object operations are not independent of the
object state.
Model-based specification exposes the system state
and defines the operations in terms of changes to
that state.
The Z notation is a mature technique for model-
based specification. It combines formal and informal
description and uses graphical highlighting when
presenting specifications.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 10 Slide 31
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

The structure of a Z schema

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 10 Slide 32
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Modelling the insulin pump

The Z schema for the insulin pump declares
a number of state variables including:
• Input variables such as switch? (the device

switch), InsulinReservoir? (the current quantity
of insulin in the reservoir) and Reading? (the
reading from the sensor);

• Output variables such as alarm! (a system
alarm), display1!, display2! (the displays on the
pump) and dose! (the dose of insulin to be
delivered).

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 10 Slide 33
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Schema invariant

Each Z schema has an invariant part which defines
conditions that are always true.
For the insulin pump schema it is always true that
• The dose must be less than or equal to the capacity of the

insulin reservoir;
• No single dose may be more than 4 units of insulin and

the total dose delivered in a time period must not exceed
25 units of insulin. This is a safety constraint;

• display2! shows the amount of insulin to be delivered.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 10 Slide 34
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Insulin pump schema
INSULIN_PUMP_STATE

//Input device definition

switch?: (off, manual, auto)
ManualDeliveryButton?: N
Reading?: N
HardwareTest?: (OK, batterylow, pumpfail, sensorfail, deliveryfail)
InsulinReservoir?: (present, notpresent)
Needle?: (present, notpresent)
clock?: TIME

//Output device definition
alarm! = (on, off)
display1!, string
display2!: string
clock!: TIME
dose!: N

// State variables used for dose computation
status: (running, warning, error)
r0, r1, r2: N
capacity, insulin_available : N
max_daily_dose, max_single_dose, minimum_dose: N
safemin, safemax: N
CompDose, cumulative_dose: N

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 10 Slide 35
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

State invariants

r2 = Reading?
dose! Š insulin_available
insulin_available Š capacity

// The cumulative dose of insulin delivered is set to zero once every 24 hours
clock? = 000000 ⇒ cumulative_dose = 0

// If the cumulative dose exceeds the limit then operation is suspended
cumulative_dose � max_daily_dose ∧ status = error ∧
display1! = “Daily dose exceeded”

// Pump configuration parameters
capacity = 100 ∧ safemin = 6 ∧ safemax = 14
max_daily_dose = 25 ∧ max_single_dose = 4 ∧ minimum_dose = 1

display2! = nat_to_string (dose!)
clock! = clock?

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 10 Slide 36
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

The dosage computation

The insulin pump computes the amount of insulin
required by comparing the current reading with two
previous readings.
If these suggest that blood glucose is rising then
insulin is delivered.
Information about the total dose delivered is
maintained to allow the safety check invariant to be
applied.
Note that this invariant always applies - there is no
need to repeat it in the dosage computation.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 10 Slide 37
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

RUN schema (1)

RUN
ΔINSULIN_PUMP_STATE

switch? = auto
status = running ∨ status = warning
insulin_available � max_single_dose
cumulative_dose < max_daily_dose

// The dose of insulin is computed depending on the blood sugar level
(SUGAR_LOW ∨ SUGAR_OK ∨ SUGAR_HIGH)
// 1. If the computed insulin dose is zero, don’t deliver any insulin

CompDose = 0 ⇒ dose! = 0
∨

// 2. The maximum daily dose would be exceeded if the computed dose was delivered so the insulin
dose is set to the difference between the maximum allowed daily dose and the cumulative dose
delivered so far

CompDose + cumulative_dose > max_daily_dose ⇒ alarm! = on ∧ status’ = warning ∧ dose! =
max_daily_dose – cumulative_dose
∨

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 10 Slide 38
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

RUN schema (2)

// 3. The normal situation. If maximum single dose is not exceeded then deliver the computed dose. If
the single dose computed is too high, restrict the dose delivered to the maximum single dose

CompDose + cumulative_dose < max_daily_dose ⇒
 (CompDose Š max_single_dose ⇒ dose! = CompDose
 ∨

CompDose > max_single_dose ⇒ dose! = max_single_dose)
insulin_available’ = insulin_available – dose!
cumulative_dose’ = cumulative_dose + dose!

insulin_available Š max_single_dose * 4 ⇒ status’ = warning ∧
display1! = “Insulin low”

r1’ = r2
r0’ = r1

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 10 Slide 39
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Sugar OK schema

SUGAR_OK
r2 � safemin ∧ r2 Š safemax

// sugar level stable or falling

r2 Š r1 ⇒ CompDose = 0
∨
// sugar level increasing but rate of increase falling

r2 > r1 ∧ (r2-r1) < (r1-r0) ⇒ CompDose = 0
∨
// sugar level increasing and rate of increase increasing compute dose
// a minimum dose must be delivered if rounded to zero

r2 > r1 ∧ (r2-r1) � (r1-r0) ∧ (round ((r2-r1)/4) = 0) ⇒
CompDose = minimum_dose

∨
r2 > r1 ∧ (r2-r1) � (r1-r0) ∧ (round ((r2-r1)/4) > 0) ⇒

CompDose = round ((r2-r1)/4)

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 10 Slide 40
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Key points

Formal system specification complements informal
specification techniques.
Formal specifications are precise and unambiguous.
They remove areas of doubt in a specification.
Formal specification forces an analysis of the system
requirements at an early stage. Correcting errors at
this stage is cheaper than modifying a delivered
system.
Formal specification techniques are most applicable
in the development of critical systems and
standards.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 10 Slide 41
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Key points

Algebraic techniques are suited to interface
specification where the interface is defined
as a set of object classes.
Model-based techniques model the system
using sets and functions. This simplifies
some types of behavioural specification.
Operations are defined in a model-based
spec. by defining pre and post conditions on
the system state.

