
©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 11 Slide 1
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Architectural Design

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 11 Slide 2
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Objectives

To introduce architectural design and to
discuss its importance
To explain the architectural design decisions
that have to be made
To introduce three complementary
architectural styles covering organisation,
decomposition and control
To discuss reference architectures are used
to communicate and compare architectures

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 11 Slide 3
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Topics covered

Architectural design decisions
System organisation
Decomposition styles
Control styles
Reference architectures

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 11 Slide 4
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Software architecture

The design process for identifying the sub-
systems making up a system and the
framework for sub-system control and
communication is architectural design.
The output of this design process is a
description of the software architecture.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 11 Slide 5
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Architectural design

An early stage of the system design process.
Represents the link between specification
and design processes.
Often carried out in parallel with some
specification activities.
It involves identifying major system
components and their communications.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 11 Slide 6
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Advantages of explicit architecture

Stakeholder communication
• Architecture may be used as a focus of

discussion by system stakeholders.
System analysis
• Means that analysis of whether the system can

meet its non-functional requirements is
possible.

Large-scale reuse
• The architecture may be reusable across a

range of systems.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 11 Slide 7
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Architecture and system characteristics

Performance
• Localise critical operations and minimise communications.

Use large rather than fine-grain components.
Security
• Use a layered architecture with critical assets in the inner

layers.
Safety
• Localise safety-critical features in a small number of sub-

systems.
Availability
• Include redundant components and mechanisms for fault

tolerance.
Maintainability
• Use fine-grain, replaceable components.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 11 Slide 8
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Architectural conflicts

Using large-grain components improves
performance but reduces maintainability.
Introducing redundant data improves
availability but makes security more difficult.
Localising safety-related features usually
means more communication so degraded
performance.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 11 Slide 9
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

System structuring

Concerned with decomposing the system
into interacting sub-systems.
The architectural design is normally
expressed as a block diagram presenting an
overview of the system structure.
More specific models showing how sub-
systems share data, are distributed and
interface with each other may also be
developed.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 11 Slide 10
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Packing robot control system

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 11 Slide 11
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Box and line diagrams

Very abstract - they do not show the nature
of component relationships nor the externally
visible properties of the sub-systems.
However, useful for communication with
stakeholders and for project planning.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 11 Slide 12
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Architectural design decisions

Architectural design is a creative process so
the process differs depending on the type of
system being developed.
However, a number of common decisions
span all design processes.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 11 Slide 13
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Architectural design decisions

Is there a generic application architecture that can
be used?
How will the system be distributed?
What architectural styles are appropriate?
What approach will be used to structure the system?
How will the system be decomposed into modules?
What control strategy should be used?
How will the architectural design be evaluated?
How should the architecture be documented?

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 11 Slide 14
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Architecture reuse

Systems in the same domain often have
similar architectures that reflect domain
concepts.
Application product lines are built around a
core architecture with variants that satisfy
particular customer requirements.
Application architectures are covered in
Chapter 13 and product lines in Chapter 18.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 11 Slide 15
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Architectural styles

The architectural model of a system may
conform to a generic architectural model or
style.
An awareness of these styles can simplify
the problem of defining system architectures.
However, most large systems are
heterogeneous and do not follow a single
architectural style.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 11 Slide 16
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Architectural models

Used to document an architectural design.
Static structural model that shows the major system
components.
Dynamic process model that shows the process
structure of the system.
Interface model that defines sub-system interfaces.
Relationships model such as a data-flow model that
shows sub-system relationships.
Distribution model that shows how sub-systems are
distributed across computers.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 11 Slide 17
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

System organisation

Reflects the basic strategy that is used to
structure a system.
Three organisational styles are widely used:
• A shared data repository style;
• A shared services and servers style;
• An abstract machine or layered style.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 11 Slide 18
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

The repository model

Sub-systems must exchange data. This may
be done in two ways:
• Shared data is held in a central database or

repository and may be accessed by all sub-
systems;

• Each sub-system maintains its own database
and passes data explicitly to other sub-systems.

When large amounts of data are to be
shared, the repository model of sharing is
most commonly used.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 11 Slide 19
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

CASE toolset architecture

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 11 Slide 20
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Repository model characteristics

Advantages
• Efficient way to share large amounts of data;
• Sub-systems need not be concerned with how data is

produced Centralised management e.g. backup, security,
etc.

• Sharing model is published as the repository schema.
Disadvantages
• Sub-systems must agree on a repository data model.

Inevitably a compromise;
• Data evolution is difficult and expensive;
• No scope for specific management policies;
• Difficult to distribute efficiently.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 11 Slide 21
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Client-server model

Distributed system model which shows how
data and processing is distributed across a
range of components.
Set of stand-alone servers which provide
specific services such as printing, data
management, etc.
Set of clients which call on these services.
Network which allows clients to access
servers.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 11 Slide 22
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Film and picture library

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 11 Slide 23
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Client-server characteristics

Advantages
• Distribution of data is straightforward;
• Makes effective use of networked systems. May require

cheaper hardware;
• Easy to add new servers or upgrade existing servers.

Disadvantages
• No shared data model so sub-systems use different data

organisation. Data interchange may be inefficient;
• Redundant management in each server;
• No central register of names and services - it may be hard

to find out what servers and services are available.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 11 Slide 24
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Abstract machine (layered) model

Used to model the interfacing of sub-systems.
Organises the system into a set of layers (or abstract
machines) each of which provide a set of services.
Supports the incremental development of sub-
systems in different layers. When a layer interface
changes, only the adjacent layer is affected.
However, often artificial to structure systems in this
way.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 11 Slide 25
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Version management system

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 11 Slide 26
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Modular decomposition styles

Styles of decomposing sub-systems into
modules.
No rigid distinction between system
organisation and modular decomposition.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 11 Slide 27
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Sub-systems and modules

A sub-system is a system in its own right
whose operation is independent of the
services provided by other sub-systems.
A module is a system component that
provides services to other components but
would not normally be considered as a
separate system.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 11 Slide 28
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Modular decomposition

Another structural level where sub-systems are
decomposed into modules.
Two modular decomposition models covered
• An object model where the system is decomposed into

interacting object;
• A pipeline or data-flow model where the system is

decomposed into functional modules which transform
inputs to outputs.

If possible, decisions about concurrency should be
delayed until modules are implemented.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 11 Slide 29
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Object models

Structure the system into a set of loosely
coupled objects with well-defined interfaces.
Object-oriented decomposition is concerned
with identifying object classes, their attributes
and operations.
When implemented, objects are created from
these classes and some control model used
to coordinate object operations.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 11 Slide 30
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Invoice processing system

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 11 Slide 31
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Object model advantages

Objects are loosely coupled so their
implementation can be modified without
affecting other objects.
The objects may reflect real-world entities.
OO implementation languages are widely
used.
However, object interface changes may
cause problems and complex entities may
be hard to represent as objects.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 11 Slide 32
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Function-oriented pipelining

Functional transformations process their
inputs to produce outputs.
May be referred to as a pipe and filter model
(as in UNIX shell).
Variants of this approach are very common.
When transformations are sequential, this is
a batch sequential model which is
extensively used in data processing systems.
Not really suitable for interactive systems.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 11 Slide 33
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Invoice processing system

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 11 Slide 34
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Pipeline model advantages

Supports transformation reuse.
Intuitive organisation for stakeholder
communication.
Easy to add new transformations.
Relatively simple to implement as either a
concurrent or sequential system.
However, requires a common format for data
transfer along the pipeline and difficult to
support event-based interaction.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 11 Slide 35
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Control styles

Are concerned with the control flow between
sub-systems. Distinct from the system
decomposition model.
Centralised control
• One sub-system has overall responsibility for

control and starts and stops other sub-systems.
Event-based control
• Each sub-system can respond to externally

generated events from other sub-systems or the
system’s environment.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 11 Slide 36
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Centralised control

A control sub-system takes responsibility for
managing the execution of other sub-systems.
Call-return model
• Top-down subroutine model where control starts at the

top of a subroutine hierarchy and moves downwards.
Applicable to sequential systems.

Manager model
• Applicable to concurrent systems. One system

component controls the stopping, starting and
coordination of other system processes. Can be
implemented in sequential systems as a case statement.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 11 Slide 37
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Call-return model

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 11 Slide 38
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Real-time system control

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 11 Slide 39
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Event-driven systems

Driven by externally generated events where the
timing of the event is outwith the control of the sub-
systems which process the event.
Two principal event-driven models
• Broadcast models. An event is broadcast to all sub-

systems. Any sub-system which can handle the event
may do so;

• Interrupt-driven models. Used in real-time systems where
interrupts are detected by an interrupt handler and passed
to some other component for processing.

Other event driven models include spreadsheets
and production systems.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 11 Slide 40
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Broadcast model

Effective in integrating sub-systems on different
computers in a network.
Sub-systems register an interest in specific events.
When these occur, control is transferred to the sub-
system which can handle the event.
Control policy is not embedded in the event and
message handler. Sub-systems decide on events of
interest to them.
However, sub-systems don’t know if or when an
event will be handled.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 11 Slide 41
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Selective broadcasting

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 11 Slide 42
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Interrupt-driven systems

Used in real-time systems where fast
response to an event is essential.
There are known interrupt types with a
handler defined for each type.
Each type is associated with a memory
location and a hardware switch causes
transfer to its handler.
Allows fast response but complex to program
and difficult to validate.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 11 Slide 43
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Interrupt-driven control

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 11 Slide 44
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Reference architectures

Architectural models may be specific to some
application domain.
Two types of domain-specific model
• Generic models which are abstractions from a number of

real systems and which encapsulate the principal
characteristics of these systems. Covered in Chapter 13.

• Reference models which are more abstract, idealised
model. Provide a means of information about that class of
system and of comparing different architectures.

Generic models are usually bottom-up models;
Reference models are top-down models.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 11 Slide 45
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Reference architectures

Reference models are derived from a study
of the application domain rather than from
existing systems.
May be used as a basis for system
implementation or to compare different
systems. It acts as a standard against which
systems can be evaluated.
OSI model is a layered model for
communication systems.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 11 Slide 46
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

OSI reference model

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 11 Slide 47
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Case reference model

Data repository services
• Storage and management of data items.

Data integration services
• Managing groups of entities.

Task management services
• Definition and enaction of process models.

Messaging services
• Tool-tool and tool-environment communication.

User interface services
• User interface development.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 11 Slide 48
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

The ECMA reference model

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 11 Slide 49
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Key points

The software architecture is the fundamental
framework for structuring the system.
Architectural design decisions include decisions on
the application architecture, the distribution and the
architectural styles to be used.
Different architectural models such as a structural
model, a control model and a decomposition model
may be developed.
System organisational models include repository
models, client-server models and abstract machine
models.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 11 Slide 50
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Key points

Modular decomposition models include
object models and pipelining models.
Control models include centralised control
and event-driven models.
Reference architectures may be used to
communicate domain-specific architectures
and to assess and compare architectural
designs.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 11 Slide 51
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Architectural models

Different architectural models may be
produced during the design process
Each model presents different perspectives
on the architecture

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 11 Slide 52
Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Architecture attributes

Performance
• Localise operations to minimise sub-system communication

Security
• Use a layered architecture with critical assets in inner layers

Safety
• Isolate safety-critical components

Availability
• Include redundant components in the architecture

Maintainability
• Use fine-grain, self-contained components

