
©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 15 Slide 1

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Real-time Software Design

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 15 Slide 2

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Objectives

To explain the concept of a real-time system
and why these systems are usually
implemented as concurrent processes
To describe a design process for real-time
systems
To explain the role of a real-time operating
system
To introduce generic process architectures
for monitoring and control and data
acquisition systems

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 15 Slide 3

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Topics covered

System design
Real-time operating systems
Monitoring and control systems
Data acquisition systems

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 15 Slide 4

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Real-time systems

Systems which monitor and control their
environment.
Inevitably associated with hardware devices
• Sensors: Collect data from the system

environment;
• Actuators: Change (in some way) the system's

environment;
Time is critical. Real-time systems MUST
respond within specified times.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 15 Slide 5

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Definition

A real-time system is a software system where
the correct functioning of the system depends on
the results produced by the system and the time
at which these results are produced.
A soft real-time system is a system whose
operation is degraded if results are not produced
according to the specified timing requirements.
A hard real-time system is a system whose
operation is incorrect if results are not produced
according to the timing specification.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 15 Slide 6

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Stimulus/Response Systems

Given a stimulus, the system must produce a
response within a specified time.
Periodic stimuli. Stimuli which occur at
predictable time intervals
• For example, a temperature sensor may be polled 10

times per second.

Aperiodic stimuli. Stimuli which occur at
unpredictable times
• For example, a system power failure may trigger an

interrupt which must be processed by the system.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 15 Slide 7

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Architectural considerations

Because of the need to respond to timing demands
made by different stimuli/responses, the system
architecture must allow for fast switching between
stimulus handlers.
Timing demands of different stimuli are different so a
simple sequential loop is not usually adequate.
Real-time systems are therefore usually designed as
cooperating processes with a real-time executive
controlling these processes.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 15 Slide 8

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

A real-time system model

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 15 Slide 9

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Sensor/actuator processes

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 15 Slide 10

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

System elements

Sensor control processes
• Collect information from sensors. May buffer

information collected in response to a sensor
stimulus.

Data processor
• Carries out processing of collected information

and computes the system response.
Actuator control processes
• Generates control signals for the actuators.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 15 Slide 11

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Real-time programming

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 15 Slide 12

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Real-time programming

Hard-real time systems may have to
programmed in assembly language to
ensure that deadlines are met.
Languages such as C allow efficient
programs to be written but do not have
constructs to support concurrency or shared
resource management.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 15 Slide 13

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Java as a real-time language

Java supports lightweight concurrency (threads and
synchronized methods) and can be used for some
soft real-time systems.
Java 2.0 is not suitable for hard RT programming but
real-time versions of Java are now available that
address problems such as
• Not possible to specify thread execution time;
• Different timing in different virtual machines;
• Uncontrollable garbage collection;
• Not possible to discover queue sizes for shared

resources;
• Not possible to access system hardware;
• Not possible to do space or timing analysis.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 15 Slide 14

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

System design

Design both the hardware and the software
associated with system. Partition functions to
either hardware or software.
Design decisions should be made on the
basis on non-functional system
requirements.
Hardware delivers better performance but
potentially longer development and less
scope for change.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 15 Slide 15

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

R-T systems design process

Identify the stimuli to be processed and the
required responses to these stimuli.
For each stimulus and response, identify the
timing constraints.
Aggregate the stimulus and response
processing into concurrent processes. A
process may be associated with each class
of stimulus and response.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 15 Slide 16

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

R-T systems design process

Design algorithms to process each class of
stimulus and response. These must meet the
given timing requirements.
Design a scheduling system which will
ensure that processes are started in time to
meet their deadlines.
Integrate using a real-time operating system.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 15 Slide 17

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Timing constraints

May require extensive simulation and
experiment to ensure that these are met by
the system.
May mean that certain design strategies
such as object-oriented design cannot be
used because of the additional overhead
involved.
May mean that low-level programming
language features have to be used for
performance reasons.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 15 Slide 18

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Real-time system modelling

The effect of a stimulus in a real-time system may
trigger a transition from one state to another.
Finite state machines can be used for modelling
real-time systems.
However, FSM models lack structure. Even simple
systems can have a complex model.
The UML includes notations for defining state
machine models
See Chapter 8 for further examples of state machine
models.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 15 Slide 19

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Petrol pump state model

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 15 Slide 20

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Real-time operating systems

Real-time operating systems are specialised
operating systems which manage the processes in
the RTS.
Responsible for process management and
resource (processor and memory) allocation.
May be based on a standard kernel which
is used unchanged or modified for a particular
application.
Do not normally include facilities such as file
management.

14

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 15 Slide 21

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Operating system components

Real-time clock
• Provides information for process scheduling.

Interrupt handler
• Manages aperiodic requests for service.

Scheduler
• Chooses the next process to be run.

Resource manager
• Allocates memory and processor resources.

Dispatcher
• Starts process execution.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 15 Slide 22

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Non-stop system components

Configuration manager
• Responsible for the dynamic reconfiguration of the system

software and hardware. Hardware modules may be
replaced and software upgraded without stopping the
systems.

Fault manager
• Responsible for detecting software and hardware faults

and
taking appropriate actions (e.g. switching to backup disks)
to ensure that the system continues in operation.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 15 Slide 23

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Real-time OS components

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 15 Slide 24

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Process priority

The processing of some types of stimuli must
sometimes take priority.
Interrupt level priority. Highest priority which is
allocated to processes requiring a very fast
response.
Clock level priority. Allocated to periodic
processes.
Within these, further levels of priority may be
assigned.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 15 Slide 25

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Interrupt servicing

Control is transferred automatically to a
pre-determined memory location.
This location contains an instruction to jump to
an interrupt service routine.
Further interrupts are disabled, the interrupt
serviced and control returned to the interrupted
process.
Interrupt service routines MUST be short,
simple and fast.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 15 Slide 26

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Periodic process servicing

In most real-time systems, there will be several
classes of periodic process, each with different
periods (the time between executions),
execution times and deadlines (the time by
which processing must be completed).
The real-time clock ticks periodically and each
tick causes an interrupt which schedules the
process manager for periodic processes.
The process manager selects a process which
is ready for execution.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 15 Slide 27

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Process management

Concerned with managing the set of
concurrent processes.
Periodic processes are executed at pre-
specified time intervals.
The RTOS uses the real-time clock to
determine when to execute a process taking
into account:
• Process period - time between executions.
• Process deadline - the time by which

processing must be complete.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 15 Slide 28

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

RTE process management

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 15 Slide 29

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Process switching

The scheduler chooses the next process to
be executed by the processor. This depends
on a scheduling strategy which may take the
process priority into account.
The resource manager allocates memory
and a processor for the process to be
executed.
The dispatcher takes the process from ready
list, loads it onto a processor and starts
execution.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 15 Slide 30

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Scheduling strategies

Non pre-emptive scheduling
• Once a process has been scheduled for execution, it runs

to completion or until it is blocked for some reason (e.g.
waiting for I/O).

Pre-emptive scheduling
• The execution of an executing processes may be stopped

if a higher priority process requires service.

Scheduling algorithms
• Round-robin;
• Rate monotonic;
• Shortest deadline first.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 15 Slide 31

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Monitoring and control systems

Important class of real-time systems.
Continuously check sensors and take actions
depending on sensor values.
Monitoring systems examine sensors and
report their results.
Control systems take sensor values and
control hardware actuators.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 15 Slide 32

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Generic architecture

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 15 Slide 33

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Burglar alarm system

A system is required to monitor sensors on
doors and windows to detect the presence of
intruders in a building.
When a sensor indicates a break-in, the
system switches on lights around the area
and calls police automatically.
The system should include provision for
operation without a mains power supply.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 15 Slide 34

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Burglar alarm system

Sensors
• Movement detectors, window sensors, door sensors;
• 50 window sensors, 30 door sensors and 200 movement

detectors;
• Voltage drop sensor.

Actions
• When an intruder is detected, police are called

automatically;
• Lights are switched on in rooms with active sensors;
• An audible alarm is switched on;
• The system switches automatically to backup power when

a voltage drop is detected.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 15 Slide 35

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

The R-T system design process

Identify stimuli and associated responses.
Define the timing constraints associated with
each stimulus and response.
Allocate system functions to concurrent
processes.
Design algorithms for stimulus processing and
response generation.
Design a scheduling system which ensures that
processes will always be scheduled to meet
their deadlines.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 15 Slide 36

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Stimuli to be processed

Power failure
• Generated aperiodically by a circuit monitor.

When received, the system must switch to
backup power within 50 ms.

Intruder alarm
• Stimulus generated by system sensors.

Response is to call the police, switch on building
lights and the audible alarm.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 15 Slide 37

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Timing requirements
Stimulus/Response Timing requirements

Power fail interrupt The switch to backup power must be completed
within a deadline of 50 ms.

Door alarm Eac h door alarm sh ould be polled twice per
second.

Window alarm Eac h window alarm sh ould be polled twice per
second.

Movement detector Eac h movement detector should be polled twice
per second.

Audible alarm The audible alarm should be switched on within
1/2 second of an alarm being raised by a sensor.

Lights sw itch The lights should be switched on within 1/2
second of an alarm being raised by a sensor.

Communications The ca ll to the police should be started within 2
seconds of an alarm being raised by a sensor.

Voice synthesiser A synthesised message should be available
within 4 seconds of an alarm being raised by a
sensor.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 15 Slide 38

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Burglar alarm system processes

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 15 Slide 39

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Building_monitor process 1

class BuildingMonitor extends Thread {

BuildingSensor win, door, move ;

Siren siren = new Siren () ;
Lights lights = new Lights () ;
Synthesizer synthesizer = new Synthesizer () ;
DoorSensors doors = new DoorSensors (30) ;
WindowSensors windows = new WindowSensors (50) ;
MovementSensors movements = new MovementSensors (200) ;
PowerMonitor pm = new PowerMonitor () ;

BuildingMonitor()
{

// initialise all the sensors and start the processes
siren.start () ; lights.start () ;
synthesizer.start () ; windows.start () ;
doors.start () ; movements.start () ; pm.start () ;

}

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 15 Slide 40

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Building monitor process 2
public void run ()

{
int room = 0 ;
while (true)
{

// poll the movement sensors at least twice per second (400 Hz)
move = movements.getVal () ;
// poll the window sensors at least twice/second (100 Hz)
win = windows.getVal () ;
// poll the door sensors at least twice per second (60 Hz)
door = doors.getVal () ;
if (move.sensorVal == 1 | door.sensorVal == 1 | win.sensorVal == 1)

{
// a sensor has indicated an intruder
if (move.sensorVal == 1) room = move.room ;
if (door.sensorVal == 1) room = door.room ;
if (win.sensorVal == 1) room = win.room ;

lights.on (room) ; siren.on () ; synthesizer.on (room) ;
break ;

}
}

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 15 Slide 41

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Building_monitor process 3

lights.shutdown () ; siren.shutdown () ; synthesizer.shutdown () ;
windows.shutdown () ; doors.shutdown () ; movements.shutdown () ;

} // run
} //BuildingMonitor

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 15 Slide 42

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Control systems

A burglar alarm system is primarily a
monitoring system. It collects data from
sensors but no real-time actuator control.
Control systems are similar but, in response
to sensor values, the system sends control
signals to actuators.
An example of a monitoring and control
system is a system that monitors
temperature and switches heaters on and
off.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 15 Slide 43

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

A temperature control system

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 15 Slide 44

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Data acquisition systems

Collect data from sensors for subsequent
processing and analysis.
Data collection processes and processing
processes may have different periods and
deadlines.
Data collection may be faster than processing
e.g. collecting information about an explosion.
Circular or ring buffers are a mechanism for
smoothing speed differences.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 15 Slide 45

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Data acquisition architecture

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 15 Slide 46

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Reactor data collection

A system collects data from a set of sensors
monitoring the neutron flux from a nuclear
reactor.
Flux data is placed in a ring buffer for later
processing.
The ring buffer is itself implemented as a
concurrent process so that the collection and
processing processes may be synchronized.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 15 Slide 47

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Reactor flux monitoring

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 15 Slide 48

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

A ring buffer

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 15 Slide 49

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Mutual exclusion

Producer processes collect data and add it to
the buffer. Consumer processes take data
from the buffer and make elements available.
Producer and consumer processes must be
mutually excluded from accessing the same
element.
The buffer must stop producer processes
adding information to a full buffer and
consumer processes trying to take
information from an empty buffer.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 15 Slide 50

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Ring buffer implementation 1

class CircularBuffer
{

int bufsize ;
SensorRecord [] store ;
int numberOfEntries = 0 ;
int front = 0, back = 0 ;

CircularBuffer (int n) {
bufsize = n ;
store = new SensorRecord [bufsize] ;

} // CircularBuffer

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 15 Slide 51

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Ring buffer implementation 2
synchronized void put (SensorRecord rec)

throws InterruptedException
{

if (numberOfEntries == bufsize)
wait () ;

store [back] = new SensorRecord (rec.sensorId, rec
back = back + 1 ;
if (back == bufsize)

back = 0 ;
numberOfEntries = numberOfEntries + 1 ;
notify () ;

} // put

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 15 Slide 52

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Ring buffer implementation 3

synchronized SensorRecord get () throws InterruptedException
{

SensorRecord result = new SensorRecord (-1, -1) ;
if (numberOfEntries == 0)

wait () ;
result = store [front] ;
front = front + 1 ;
if (front == bufsize)

front = 0 ;
numberOfEntries = numberOfEntries - 1 ;
notify () ;
return result ;

} // get
} // CircularBuffer

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 15 Slide 53

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Key points

Real-time system correctness depends not just
on what the system does but also on how fast it
reacts.
A general RT system model involves associating
processes with sensors and actuators.
Real-time systems architectures are usually
designed as a number of concurrent processes.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 15 Slide 54

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Key points

Real-time operating systems are responsible
for
process and resource management.
Monitoring and control systems poll sensors
and send control signal to actuators.
Data acquisition systems are usually
organised according to a producer consumer
model.

