
©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 17 Slide 1

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Rapid software development

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 17 Slide 2

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Objectives

To explain how an iterative, incremental
development process leads to faster delivery
of more useful software
To discuss the essence of agile development
methods
To explain the principles and practices of
extreme programming
To explain the roles of prototyping in the
software process

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 17 Slide 3

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Topics covered

Agile methods
Extreme programming
Rapid application development
Software prototyping

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 17 Slide 4

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Rapid software development
Because of rapidly changing business
environments, businesses have to respond
to new opportunities and competition.
This requires software and rapid
development and delivery is not often the
most critical requirement for software
systems.
Businesses may be willing to accept lower
quality software if rapid delivery of essential
functionality is possible.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 17 Slide 5

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Requirements

Because of the changing environment, it is
often impossible to arrive at a stable,
consistent set of system requirements.
Therefore a waterfall model of development
is impractical and an approach to
development based on iterative specification
and delivery is the only way to deliver
software quickly.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 17 Slide 6

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Characteristics of RAD processes

The processes of specification, design and
implementation are concurrent. There is no detailed
specification and design documentation is
minimised.
The system is developed in a series of increments.
End users evaluate each increment and make
proposals for later increments.
System user interfaces are usually developed using
an interactive development system.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 17 Slide 7

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

An iterative development process

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 17 Slide 8

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Advantages of incremental development

Accelerated delivery of customer services.
Each increment delivers the highest priority
functionality to the customer.
User engagement with the system. Users
have to be involved in the development
which means the system is more likely to
meet their requirements and the users are
more committed to the system.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 17 Slide 9

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Problems with incremental development

Management problems
• Progress can be hard to judge and problems hard to find

because there is no documentation to demonstrate what
has been done.

Contractual problems
• The normal contract may include a specification; without a

specification, different forms of contract have to be used.
Validation problems
• Without a specification, what is the system being tested

against?
Maintenance problems
• Continual change tends to corrupt software structure

making it more expensive to change and evolve to meet
new requirements.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 17 Slide 10

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Prototyping

For some large systems, incremental
iterative development and delivery may be
impractical; this is especially true when
multiple teams are working on different sites.
Prototyping, where an experimental system
is developed as a basis for formulating the
requirements may be used. This system is
thrown away when the system specification
has been agreed.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 17 Slide 11

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Incremental development and prototyping

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 17 Slide 12

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Conflicting objectives

The objective of incremental development is
to deliver a working system to end-users.
The development starts with those
requirements which are best understood.
The objective of throw-away prototyping is to
validate or derive the system requirements.
The prototyping process starts with those
requirements which are poorly understood.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 17 Slide 13

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Agile methods

Dissatisfaction with the overheads involved in design
methods led to the creation of agile methods. These
methods:
• Focus on the code rather than the design;
• Are based on an iterative approach to software

development;
• Are intended to deliver working software quickly and

evolve this quickly to meet changing requirements.

Agile methods are probably best suited to
small/medium-sized business systems or PC
products.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 17 Slide 14

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Principles of agile methods

Principle Description

Customer involvement The customer should be closely involved throughout the
development process. Their role is provide and prioritise new
system requirements and to evaluate the iterations of the system.

Incremental delivery The software is developed in increments with the customer
specifying the requirements to be included in each increment.

People not process The skills of the development team should be recognised and
exploited. The team should be left to develop their own ways of
working without prescriptive processes.

Embrace change Expect the system requirements to change and design the system
so that it can accommodate these changes.

Maintain simplicity Focus on simplicity in both the software being developed and in
the development process used. Wherever possible, actively work
to eliminate complexity from the system.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 17 Slide 15

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Problems with agile methods

It can be difficult to keep the interest of customers
who are involved in the process.
Team members may be unsuited to the intense
involvement that characterises agile methods.
Prioritising changes can be difficult where there are
multiple stakeholders.
Maintaining simplicity requires extra work.
Contracts may be a problem as with other
approaches to iterative development.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 17 Slide 16

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Extreme programming

Perhaps the best-known and most widely
used agile method.
Extreme Programming (XP) takes an
‘extreme’ approach to iterative development.
• New versions may be built several times per

day;
• Increments are delivered to customers every 2

weeks;
• All tests must be run for every build and the

build is only accepted if tests run successfully.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 17 Slide 17

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

The XP release cycle

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 17 Slide 18

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Extreme programming practices 1

Incremental planning Requirements are recorded on Story Cards and the Stories to be
included in a release are determined by the time available and
their relative priority. The developers break these Stories into
development ŌTasksÕ.

Small Releases The minimal useful set of functionality that provides business
value is developed first. Releases of the system are frequent and
incrementally add functionality to the first release.

Simple Design Enough de sign is carried out to meet the current requirements
and no more.

Test first development An automated unit test framework is used to write tests for a new
piece of functionality before that functionality itself is
implemented.

Refactoring All developers are expected to refactor the code con tinuously as
soon as possible code improvements are found. This keeps the
code simple and maintainable.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 17 Slide 19

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Extreme programming practices 2

Pair Programming Developers work in pairs, checking each otherÕs work and
providing the support to always do a good job.

Collective Ownership The pairs of developers work on all areas of the system, so that
no islands of expertise develop and all the developers own all the
code. Anyone can change anything.

Continuous Integration As soon as work on a task is complete it is integrated into the
whole system. After any such integration, all the unit tests in the
system must pass.

Sustainable pace Large amounts of over-time are not considered acceptable as the
net effect is often to reduce code qua lity and medium term
productivity

On-site Customer A representative of the end-user of the system (the Customer)
should be available full time for the use of the XP team. In an
extreme programming process, the customer is a member of the
development team and is responsible for bringing system
requirements to the team for implementation.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 17 Slide 20

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

XP and agile principles

Incremental development is supported through
small, frequent system releases.
Customer involvement means full-time customer
engagement with the team.
People not process through pair programming,
collective ownership and a process that avoids long
working hours.
Change supported through regular system releases.
Maintaining simplicity through constant refactoring of
code.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 17 Slide 21

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Requirements scenarios

In XP, user requirements are expressed as
scenarios or user stories.
These are written on cards and the
development team break them down into
implementation tasks. These tasks are the
basis of schedule and cost estimates.
The customer chooses the stories for
inclusion in the next release based on their
priorities and the schedule estimates.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 17 Slide 22

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Story card for document downloading

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 17 Slide 23

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

XP and change

Conventional wisdom in software
engineering is to design for change. It is
worth spending time and effort anticipating
changes as this reduces costs later in the life
cycle.
XP, however, maintains that this is not
worthwhile as changes cannot be reliably
anticipated.
Rather, it proposes constant code
improvement (refactoring) to make changes
easier when they have to be implemented.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 17 Slide 24

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Testing in XP

Test-first development.
Incremental test development from
scenarios.
User involvement in test development and
validation.
Automated test harnesses are used to run all
component tests each time that a new
release is built.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 17 Slide 25

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Task cards for document downloading

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 17 Slide 26

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Test case description

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 17 Slide 27

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Test-first development

Writing tests before code clarifies the
requirements to be implemented.
Tests are written as programs rather than
data so that they can be executed
automatically. The test includes a check that
it has executed correctly.
All previous and new tests are automatically
run when new functionality is added. Thus
checking that the new functionality has not
introduced errors.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 17 Slide 28

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Pair programming

In XP, programmers work in pairs, sitting together to
develop code.
This helps develop common ownership of code and
spreads knowledge across the team.
It serves as an informal review process as each line
of code is looked at by more than 1 person.
It encourages refactoring as the whole team can
benefit from this.
Measurements suggest that development
productivity with pair programming is similar to that
of two people working independently.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 17 Slide 29

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Rapid application development

Agile methods have received a lot of
attention but other approaches to rapid
application development have been used for
many years.
These are designed to develop data-
intensive business applications and rely on
programming and presenting information
from a database.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 17 Slide 30

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

RAD environment tools

Database programming language
Interface generator
Links to office applications
Report generators

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 17 Slide 31

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

A RAD environment

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 17 Slide 32

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Interface generation

Many applications are based around complex forms
and developing these forms manually is a time-
consuming activity.
RAD environments include support for screen
generation including:
• Interactive form definition using drag and drop

techniques;
• Form linking where the sequence of forms to be

presented is specified;
• Form verification where allowed ranges in form fields is

defined.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 17 Slide 33

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Visual programming

Scripting languages such as Visual Basic
support visual programming where the
prototype is developed by creating a user
interface from standard items and
associating components with these items
A large library of components exists to
support this type of development
These may be tailored to suit the specific
application requirements

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 17 Slide 34

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Visual programming with reuse

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 17 Slide 35

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Problems with visual development

Difficult to coordinate team-based
development.
No explicit system architecture.
Complex dependencies between parts of the
program can cause maintainability problems.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 17 Slide 36

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

COTS reuse

An effective approach to rapid development
is to configure and link existing off the shelf
systems.
For example, a requirements management
system could be built by using:
• A database to store requirements;
• A word processor to capture requirements and

format reports;
• A spreadsheet for traceability management;

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 17 Slide 37

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Compound documents

For some applications, a prototype can be created
by developing a compound document.
This is a document with active elements (such as a
spreadsheet) that allow user computations.
Each active element has an associated application
which is invoked when that element is selected.
The document itself is the integrator for the different
applications.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 17 Slide 38

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Application linking

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 17 Slide 39

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Software prototyping

A prototype is an initial version of a system
used to demonstrate concepts and try out
design options.
A prototype can be used in:
• The requirements engineering process to help

with requirements elicitation and validation;
• In design processes to explore options and

develop a UI design;
• In the testing process to run back-to-back tests.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 17 Slide 40

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Benefits of prototyping

Improved system usability.
A closer match to users’ real needs.
Improved design quality.
Improved maintainability.
Reduced development effort.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 17 Slide 41

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Back to back testing

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 17 Slide 42

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

The prototyping process

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 17 Slide 43

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Throw-away prototypes

Prototypes should be discarded after
development as they are not a good basis
for a production system:
• It may be impossible to tune the system to meet

non-functional requirements;
• Prototypes are normally undocumented;
• The prototype structure is usually degraded

through rapid change;
• The prototype probably will not meet normal

organisational quality standards.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 17 Slide 44

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Key points

An iterative approach to software development leads
to faster delivery of software.
Agile methods are iterative development methods
that aim to reduce development overhead and so
produce software faster.
Extreme programming includes practices such as
systematic testing, continuous improvement and
customer involvement.
The approach to testing in XP is a particular strength
where executable tests are developed before the
code is written.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 17 Slide 45

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Key points

Rapid application development environments
include database programming languages,
form generation tools and links to office
applications.
A throw-away prototype is used to explore
requirements and design options.
When implementing a throw-away prototype,
start with the requirements you least
understand; in incremental development,
start with the best-understood requirements.

