
©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 20 Slide 1

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Critical systems development

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 20 Slide 2

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Objectives

To explain how fault tolerance and fault
avoidance contribute to the development of
dependable systems
To describe characteristics of dependable
software processes
To introduce programming techniques for
fault avoidance
To describe fault tolerance mechanisms and
their use of diversity and redundancy

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 20 Slide 3

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Topics covered

Dependable processes
Dependable programming
Fault tolerance
Fault tolerant architectures

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 20 Slide 4

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Software dependability

In general, software customers expect all
software to be dependable. However, for
non-critical applications, they may be willing
to accept some system failures.
Some applications, however, have very high
dependability requirements and special
software engineering techniques may be
used to achieve this.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 20 Slide 5

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Dependability achievement

Fault avoidance
• The system is developed in such a way that human error

is avoided and thus system faults are minimised.
• The development process is organised so that faults in

the system are detected and repaired before delivery to
the customer.

Fault detection
• Verification and validation techniques are used to

discover and remove faults in a system before it is
deployed.

Fault tolerance
• The system is designed so that faults in the delivered

software do not result in system failure.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 20 Slide 6

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Diversity and redundancy

Redundancy
• Keep more than 1 version of a critical component

available so that if one fails then a backup is available.
Diversity
• Provide the same functionality in different ways so that

they will not fail in the same way.
However, adding diversity and redundancy adds
complexity and this can increase the chances of
error.
Some engineers advocate simplicity and extensive V
& V is a more effective route to software
dependability.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 20 Slide 7

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Diversity and redundancy examples

Redundancy. Where availability is critical
(e.g. in e-commerce systems), companies
normally keep backup servers and switch to
these automatically if failure occurs.
Diversity. To provide resilience against
external attacks, different servers may be
implemented using different operating
systems (e.g. Windows and Linux)

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 20 Slide 8

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Fault-free software

Current methods of software engineering now
allow for the production of fault-free software, at
least for relatively small systems.
Fault-free software means software which
conforms to its specification. It does NOT mean
software which will always perform correctly as
there may be specification errors.
The cost of producing fault free software is very
high. It is only cost-effective in exceptional
situations. It is often cheaper to accept software
faults and pay for their consequences than to
expend resources on developing fault-free software.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 20 Slide 9

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Fault-free software development

Dependable software processes
Quality management
Formal specification
Static verification
Strong typing
Safe programming
Protected information

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 20 Slide 10

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Fault removal costs

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 20 Slide 11

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Dependable processes

To ensure a minimal number of software
faults, it is important to have a well-defined,
repeatable software process.
A well-defined repeatable process is one that
does not depend entirely on individual skills;
rather can be enacted by different people.
For fault detection, it is clear that the process
activities should include significant effort
devoted to verification and validation.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 20 Slide 12

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Dependable process characteristics

Documentable The process should have a defined process model that sets out
the activities in the process and the documentation that is to be
produced during these activities.

Standardised A comprehensive set of software development standards that
define how the software is to be produced and documented
should be available.

Auditable The process should be understandable by people apart from
process participants who can check that process standards are
being followed and make suggestions for process improvement.

Diverse The process should include redundant and diverse verification
and validation activities.

Robust The process should be able to recover from failures of
individual process activities.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 20 Slide 13

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Validation activities

Requirements inspections.
Requirements management.
Model checking.
Design and code inspection.
Static analysis.
Test planning and management.
Configuration management, discussed in
Chapter 29, is also essential.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 20 Slide 14

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Dependable programming

Use programming constructs and techniques
that contribute to fault avoidance and fault
tolerance
• Design for simplicity;
• Protect information from unauthorised access;
• Minimise the use of unsafe programming

constructs.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 20 Slide 15

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Information protection

Information should only be exposed to those parts of
the program which need to access it. This involves
the creation of objects or abstract data types that
maintain state and that provide operations on that
state.
This avoids faults for three reasons:
• the probability of accidental corruption of information is

reduced;
• the information is surrounded by ‘firewalls’ so that

problems are less likely to spread to other parts of the
program;

• as all information is localised, you are less likely to make
errors and reviewers are more likely to find errors.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 20 Slide 16

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

A queue specification in Java

interface Queue {

public void put (Object o) ;
public void remove (Object o) ;
public int size () ;

} //Queue

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 20 Slide 17

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Signal declaration in Java

class Signal {

static public final int red = 1 ;
static public final int amber = 2 ;
static public final int green = 3 ;

public int sigState ;
}

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 20 Slide 18

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Safe programming

Faults in programs are usually a
consequence of programmers making
mistakes.
These mistakes occur because people lose
track of the relationships between program
variables.
Some programming constructs are more
error-prone than others so avoiding their use
reduces programmer mistakes.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 20 Slide 19

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Structured programming

First proposed in 1968 as an approach to
development that makes programs easier to
understand and that avoids programmer errors.
Programming without gotos.
While loops and if statements as the only
control statements.
Top-down design.
An important development because it promoted
thought and discussion about programming.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 20 Slide 20

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Error-prone constructs

Floating-point numbers
• Inherently imprecise. The imprecision may lead to invalid

comparisons.
Pointers
• Pointers referring to the wrong memory areas can corrupt

data. Aliasing can make programs difficult to understand
and change.

Dynamic memory allocation
• Run-time allocation can cause memory overflow.

Parallelism
• Can result in subtle timing errors because of unforeseen

interaction between parallel processes.
Recursion
• Errors in recursion can cause memory overflow.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 20 Slide 21

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Error-prone constructs
Interrupts
• Interrupts can cause a critical operation to be terminated

and make a program difficult to understand.
Inheritance
• Code is not localised. This can result in unexpected

behaviour when changes are made and problems of
understanding.

Aliasing
• Using more than 1 name to refer to the same state

variable.
Unbounded arrays
• Buffer overflow failures can occur if no bound checking on

arrays.
Default input processing
• An input action that occurs irrespective of the input.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 20 Slide 22

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Exception handling

A program exception is an error or some
unexpected event such as a power failure.
Exception handling constructs allow for such
events to be handled without the need for
continual status checking to detect exceptions.
Using normal control constructs to detect
exceptions needs many additional statements to be
added to the program. This adds a significant
overhead and is potentially error-prone.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 20 Slide 23

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Exceptions in Java 1

class SensorFailureException extends Exception {

SensorFailureException (String msg) {
super (msg) ;
Alarm.activate (msg) ;

}
} // SensorFailureException

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 20 Slide 24

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Exceptions in Java 2

class Sensor {

int readVal () throws SensorFailureException {

try {
int theValue = DeviceIO.readInteger () ;
if (theValue < 0)

throw new SensorFailureException ("Sensor failure") ;
return theValue ;

}
catch (deviceIOException e)

{
throw new SensorFailureException (“ Sensor read error ”) ;

}
} // readVal

} // Sensor

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 20 Slide 25

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

A temperature controller

Exceptions can be used as a normal programming
technique and not just as a way of recovering from
faults.
Consider an example of a freezer controller that
keeps the freezer temperature within a specified
range.
Switches a refrigerant pump on and off.
Sets off an alarm is the maximum allowed
temperature is exceeded.
Uses exceptions as a normal programming
technique.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 20 Slide 26

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Freezer controller 1

class FreezerController {
Sensor tempSensor = new Sensor () ;
Dial tempDial = new Dial () ;
float freezerTemp = tempSensor.readVal () ;
final float dangerTemp = (float) -18.0 ;
final long coolingTime = (long) 200000.0 ;
public void run () throws InterruptedException {
try { Pump.switchIt (Pump.on) ;

do {
if (freezerTemp > tempDial.setting ())

if (Pump.status == Pump.off)
{ Pump.switchIt (Pump.on) ;

Thread.sleep (coolingTime) ;
}

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 20 Slide 27

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Freezer controller 2
if (freezerTemp > dangerTemp)

throw new FreezerTooHotException () ;
freezerTemp = tempSensor.readVal () ;

} while (true) ;

} // try block
catch (FreezerTooHotException f)
{ Alarm.activate () ; }
catch (InterruptedException e)
{

System.out.println (“Thread exception”) ;
throw new InterruptedException () ;

}
} //run
} // FreezerController

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 20 Slide 28

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Fault tolerance

In critical situations, software systems must be
fault tolerant.
Fault tolerance is required where there are high
availability requirements or where system failure
costs are very high.
Fault tolerance means that the system can continue
in operation in spite of software failure.
Even if the system has been proved to conform to its
specification, it must also be fault tolerant as there
may be specification errors or the validation may be
incorrect.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 20 Slide 29

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Fault tolerance actions

Fault detection
• The system must detect that a fault (an incorrect system

state) has occurred.
Damage assessment
• The parts of the system state affected by the fault must be

detected.
Fault recovery
• The system must restore its state to a known safe state.

Fault repair
• The system may be modified to prevent recurrence of the

fault. As many software faults are transitory, this is often
unnecessary.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 20 Slide 30

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Fault detection and damage assessment

The first stage of fault tolerance is to detect
that a fault (an erroneous system state) has
occurred or will occur.
Fault detection involves defining constraints
that must hold for all legal states and
checking the state against these constraints.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 20 Slide 31

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Insulin pump state constraints

// The dose of insulin to be delivered must always be greater
// than zero and less that some defined maximum single dose

insulin_dose >= 0 & insulin_dose <= insulin_reservoir_contents

// The total amount of insulin delivered in a day must be less
// than or equal to a defined daily maximum dose

cumulative_dose <= maximum_daily_dose

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 20 Slide 32

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Fault detection

Preventative fault detection
• The fault detection mechanism is initiated

before the state change is committed. If an
erroneous state is detected, the change is not
made.

Retrospective fault detection
• The fault detection mechanism is initiated after

the system state has been changed. This is
used when a incorrect sequence of correct
actions leads to an erroneous state or when
preventative fault detection involves too much
overhead.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 20 Slide 33

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Preventative fault detection really involves
extending the type system by including
additional constraints as part of the type
definition.
These constraints are implemented by
defining basic operations within a class
definition.

Type system extension

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 20 Slide 34

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

PositiveEvenInteger 1

class PositiveEvenInteger {

int val = 0 ;

PositiveEvenInteger (int n) throws NumericException
{

if (n < 0 | n%2 == 1)
throw new NumericException () ;

else
val = n ;

}// PositiveEvenInteger

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 20 Slide 35

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

PositiveEvenInteger 2

public void assign (int n) throws NumericException
{

if (n < 0 | n%2 == 1)
throw new NumericException ();

else
val = n ;

} // assign

int toInteger ()
{

return val ;
} //to Integer

boolean equals (PositiveEvenInteger n)
{

return (val == n.val) ;
} // equals

} //PositiveEven

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 20 Slide 36

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Damage assessment

Analyse system state to judge the extent of
corruption caused by a system failure.
The assessment must check what parts of
the state space have been affected by the
failure.
Generally based on ‘validity functions’ that
can be applied to the state elements to
assess if their value is within an allowed
range.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 20 Slide 37

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Robust array 1

class RobustArray {

// Checks that all the objects in an array of objects
// conform to some defined constraint

boolean [] checkState ;
CheckableObject [] theRobustArray ;

RobustArray (CheckableObject [] theArray)
{

checkState = new boolean [theArray.length] ;
theRobustArray = theArray ;

} //RobustArray

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 20 Slide 38

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Robust array 2

public void assessDamage () throws ArrayDamagedException
{

boolean hasBeenDamaged = false ;

for (int i= 0; i <this.theRobustArray.length ; i ++)
{

if (! theRobustArray [i].check ())
{

checkState [i] = true ;
hasBeenDamaged = true ;

}
else

checkState [i] = false ;
}
if (hasBeenDamaged)

throw new ArrayDamagedException () ;
} //assessDamage

} // RobustArray

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 20 Slide 39

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Checksums are used for damage
assessment in data transmission.
Redundant pointers can be used to check
the integrity of data structures.
Watch dog timers can check for non-
terminating processes. If no response after a
certain time, a problem is assumed.

Damage assessment techniques

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 20 Slide 40

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Forward recovery
• Apply repairs to a corrupted system state.

Backward recovery
• Restore the system state to a known safe state.

Forward recovery is usually application specific
- domain knowledge is required to compute
possible state corrections.
Backward error recovery is simpler. Details of a
safe state are maintained and this replaces the
corrupted system state.

Fault recovery and repair

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 20 Slide 41

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Corruption of data coding
• Error coding techniques which add redundancy to coded

data can be used for repairing data corrupted during
transmission.

Redundant pointers
• When redundant pointers are included in data structures

(e.g. two-way lists), a corrupted list or filestore may be
rebuilt if a sufficient number of pointers are uncorrupted

• Often used for database and file system repair.

Forward recovery

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 20 Slide 42

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Transactions are a frequently used method
of backward recovery. Changes are not
applied until computation is complete. If an
error occurs, the system is left in the state
preceding the transaction.
Periodic checkpoints allow system to 'roll-
back' to a correct state.

Backward recovery

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 20 Slide 43

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Safe sort procedure

A sort operation monitors its own execution and
assesses if the sort has been correctly executed.
It maintains a copy of its input so that if an error
occurs, the input is not corrupted.
Based on identifying and handling exceptions.
Possible in this case as the condition for a‘valid’ sort
is known. However, in many cases it is difficult to
write validity checks.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 20 Slide 44

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Safe sort 1

class SafeSort {

static void sort (int [] in tarray, int order) throws SortError
{

int [] copy = new int [intarray.length];

// copy the input array

for (int i = 0; i < intarray.length ; i++)
copy [i] = intarray [i] ;

try {
Sort.bubblesort (intarray, intarray.length, order) ;

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 20 Slide 45

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Safe sort 2

if (order == Sort.ascending)
for (int i = 0; i <= intarray.length-2 ; i++)

if (intarray [i] > intarray [i+1])
throw new SortError () ;

else
for (int i = 0; i <= intarray.length-2 ; i++)

if (intarray [i+1] > intarray [i])
throw new SortError () ;

} // try block
catch (SortError e)
{

for (int i = 0; i < intarray.length ; i++)
intarray [i] = copy [i] ;

throw new SortError ("Array not sorted") ;
} //catch

} // sort
} // SafeSort

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 20 Slide 46

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Fault tolerant architecture

Defensive programming cannot cope with faults that
involve interactions between the hardware and the
software.
Misunderstandings of the requirements may mean
that checks and the associated code are incorrect.
Where systems have high availability requirements,
a specific architecture designed to support fault
tolerance may be required.
This must tolerate both hardware and software
failure.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 20 Slide 47

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Hardware fault tolerance

Depends on triple-modular redundancy (TMR).
There are three replicated identical components that
receive the same input and whose outputs are
compared.
If one output is different, it is ignored and component
failure is assumed.
Based on most faults resulting from component
failures rather than design faults and a low
probability of simultaneous component failure.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 20 Slide 48

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Hardware reliability with TMR

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 20 Slide 49

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Output selection

The output comparator is a (relatively) simple
hardware unit.
It compares its input signals and, if one is
different from the others, it rejects it.
Essentially, the selection of the actual output
depends on the majority vote.
The output comparator is connected to a
fault management unit that can either try to
repair the faulty unit or take it out of service.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 20 Slide 50

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Fault tolerant software architectures

The success of TMR at providing fault tolerance is
based on two fundamental assumptions
• The hardware components do not include common design

faults;
• Components fail randomly and there is a low probability of

simultaneous component failure.
Neither of these assumptions are true for software
• It isn’t possible simply to replicate the same component

as they would have common design faults;
• Simultaneous component failure is therefore virtually

inevitable.
Software systems must therefore be diverse.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 20 Slide 51

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Design diversity

Different versions of the system are designed and
implemented in different ways. They therefore ought
to have different failure modes.
Different approaches to design (e.g object-oriented
and function oriented)
• Implementation in different programming languages;
• Use of different tools and development environments;
• Use of different algorithms in the implementation.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 20 Slide 52

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Software analogies to TMR

N-version programming
• The same specification is implemented in a number of

different versions by different teams. All versions compute
simultaneously and the majority output is selected using a
voting system.

• This is the most commonly used approach e.g. in many
models of the Airbus commercial aircraft.

Recovery blocks
• A number of explicitly different versions of the same

specification are written and executed in sequence.
• An acceptance test is used to select the output to be

transmitted.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 20 Slide 53

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

N-version programming

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 20 Slide 54

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Output comparison

As in hardware systems, the output
comparator is a simple piece of software that
uses a voting mechanism to select the
output.
In real-time systems, there may be a
requirement that the results from the different
versions are all produced within a certain
time frame.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 20 Slide 55

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

N-version programming

The different system versions are designed
and implemented by different teams. It is
assumed that there is a low probability that
they will make the same mistakes. The
algorithms used should but may not be
different.
There is some empirical evidence that teams
commonly misinterpret specifications in the
same way and chose the same algorithms in
their systems.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 20 Slide 56

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Recovery blocks

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 20 Slide 57

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Recovery blocks

These force a different algorithm to be used
for each version so they reduce the
probability of common errors.
However, the design of the acceptance test
is difficult as it must be independent of the
computation used.
There are problems with this approach for
real-time systems because of the sequential
operation of the redundant versions.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 20 Slide 58

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Problems with design diversity

Teams are not culturally diverse so they tend to
tackle problems in the same way.
Characteristic errors
• Different teams make the same mistakes. Some parts of

an implementation are more difficult than others so all
teams tend to make mistakes in the same place;

• Specification errors;
• If there is an error in the specification then this is reflected

in all implementations;
• This can be addressed to some extent by using multiple

specification representations.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 20 Slide 59

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Specification dependency

Both approaches to software redundancy are
susceptible to specification errors. If the specification
is incorrect, the system could fail
This is also a problem with hardware but software
specifications are usually more complex than
hardware specifications and harder to validate.
This has been addressed in some cases by
developing separate software specifications from the
same user specification.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 20 Slide 60

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Dependability in a system can be achieved through
fault avoidance, fault detection and fault tolerance.
The use of redundancy and diversity is essential to
the development of dependable systems.
The use of a well-defined repeatable process is
important if faults in a system are to be minimised.
Some programming constructs are inherently error-
prone - their use should be avoided wherever
possible.

Key points

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 20 Slide 61

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Key points

Exceptions are used to support error
management in dependable systems.
The four aspects of program fault tolerance
are failure detection, damage assessment,
fault recovery and fault repair.
N-version programming and recovery blocks
are alternative approaches to fault-tolerant
architectures.

