
©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 24 Slide 1

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Critical Systems Validation

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 24 Slide 2

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Objectives

To explain how system reliability can be
measured and how reliability growth models
can be used for reliability prediction
To describe safety arguments and how these
are used
To discuss the problems of safety assurance
To introduce safety cases and how these are
used in safety validation

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 24 Slide 3

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Topics covered

Reliability validation
Safety assurance
Security assessment
Safety and dependability cases

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 24 Slide 4

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Validation of critical systems

The verification and validation costs for critical
systems involves additional validation processes
and analysis than for non-critical systems:
• The costs and consequences of failure are high so it is

cheaper to find and remove faults than to pay for system
failure;

• You may have to make a formal case to customers or to a
regulator that the system meets its dependability
requirements. This dependability case may require
specific V & V activities to be carried out.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 24 Slide 5

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Validation costs

Because of the additional activities involved,
the validation costs for critical systems are
usually significantly higher than for non-
critical systems.
Normally, V & V costs take up more than
50% of the total system development costs.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 24 Slide 6

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Reliability validation

Reliability validation involves exercising the program
to assess whether or not it has reached the required
level of reliability.
This cannot normally be included as part of a normal
defect testing process because data for defect
testing is (usually) atypical of actual usage data.
Reliability measurement therefore requires a
specially designed data set that replicates the
pattern of inputs to be processed by the system.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 24 Slide 7

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

The reliability measurement process

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 24 Slide 8

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Reliability validation activities

Establish the operational profile for the
system.
Construct test data reflecting the operational
profile.
Test the system and observe the number of
failures and the times of these failures.
Compute the reliability after a statistically
significant number of failures have been
observed.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 24 Slide 9

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Statistical testing

Testing software for reliability rather than fault
detection.
Measuring the number of errors allows the reliability
of the software to be predicted. Note that, for
statistical reasons, more errors than are allowed for
in the reliability specification must be induced.
An acceptable level of reliability should be
specified and the software tested and amended until
that level of reliability is reached.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 24 Slide 10

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Reliability measurement problems

Operational profile uncertainty
• The operational profile may not be an accurate

reflection of the real use of the system.
High costs of test data generation
• Costs can be very high if the test data for the

system cannot be generated automatically.
Statistical uncertainty
• You need a statistically significant number of

failures to compute the reliability but highly
reliable systems will rarely fail.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 24 Slide 11

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Operational profiles

An operational profile is a set of test data whose
frequency matches the actual frequency of these
inputs from ‘normal’ usage of the system. A close
match with actual usage is necessary otherwise the
measured reliability will not be reflected in the actual
usage of the system.
It can be generated from real data collected from an
existing system or (more often) depends on
assumptions made about the pattern of usage of a
system.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 24 Slide 12

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

An operational profile

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 24 Slide 13

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Operational profile generation

Should be generated automatically
whenever possible.
Automatic profile generation is difficult for
interactive systems.
May be straightforward for ‘normal’ inputs
but it is difficult to predict ‘unlikely’ inputs and
to create test data for them.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 24 Slide 14

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Reliability prediction

A reliability growth model is a mathematical model of
the system reliability change as it is tested and faults
are removed.
It is used as a means of reliability prediction by
extrapolating from current data
• Simplifies test planning and customer negotiations.
• You can predict when testing will be completed and

demonstrate to customers whether or not the reliability
growth will ever be achieved.

Prediction depends on the use of statistical testing to
measure the reliability of a system version.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 24 Slide 15

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Equal-step reliability growth

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 24 Slide 16

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Observed reliability growth

The equal-step growth model is simple but it does
not normally reflect reality.
Reliability does not necessarily increase with change
as the change can introduce new faults.
The rate of reliability growth tends to slow down with
time as frequently occurring faults are discovered
and removed from the software.
A random-growth model where reliability changes
fluctuate may be a more accurate reflection of real
changes to reliability.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 24 Slide 17

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Random-step reliability growth

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 24 Slide 18

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Growth model selection

Many different reliability growth models have
been proposed.
There is no universally applicable growth
model.
Reliability should be measured and observed
data should be fitted to several models.
The best-fit model can then be used for
reliability prediction.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 24 Slide 19

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Reliability prediction

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 24 Slide 20

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Safety assurance

Safety assurance and reliability
measurement are quite different:
• Within the limits of measurement error, you

know whether or not a required level of
reliability has been achieved;

• However, quantitative measurement of safety is
impossible. Safety assurance is concerned with
establishing a confidence level in the system.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 24 Slide 21

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Safety confidence

Confidence in the safety of a system can
vary from very low to very high.
Confidence is developed through:
• Past experience with the company developing

the software;
• The use of dependable processes and process

activities geared to safety;
• Extensive V & V including both static and

dynamic validation techniques.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 24 Slide 22

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Safety reviews

Review for correct intended function.
Review for maintainable, understandable
structure.
Review to verify algorithm and data structure
design against specification.
Review to check code consistency with
algorithm and data structure design.
Review adequacy of system testing.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 24 Slide 23

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Review guidance

Make software as simple as possible.
Use simple techniques for software development
avoiding error-prone constructs such as pointers and
recursion.
Use information hiding to localise the effect of any
data corruption.
Make appropriate use of fault-tolerant techniques
but do not be seduced into thinking that fault-tolerant
software is necessarily safe.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 24 Slide 24

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Safety arguments

Safety arguments are intended to show that the
system cannot reach in unsafe state.
These are weaker than correctness arguments
which must show that the system code conforms to
its specification.
They are generally based on proof by contradiction
• Assume that an unsafe state can be reached;
• Show that this is contradicted by the program code.

A graphical model of the safety argument may be
developed.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 24 Slide 25

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Construction of a safety argument

Establish the safe exit conditions for a component or
a program.
Starting from the END of the code, work backwards
until you have identified all paths that lead to the exit
of the code.
Assume that the exit condition is false.
Show that, for each path leading to the exit that the
assignments made in that path contradict the
assumption of an unsafe exit from the component.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 24 Slide 26

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Insulin delivery code

currentDose = computeInsulin () ;
// Safety check - adjust currentDose if necessary
// if statement 1
if (previousDose == 0)
{

if (currentDose > 16)
currentDose = 16 ;

}
else

if (currentDose > (previousDose * 2))
currentDose = previousDose * 2 ;

// if statement 2
if (currentDose < minimumDose)

currentDose = 0 ;
else if (currentDose > maxDose)

currentDose = maxDose ;
administerInsulin (currentDose) ;

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 24 Slide 27

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Safety argument model

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 24 Slide 28

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Program paths

Neither branch of if-statement 2 is executed
• Can only happen if CurrentDose is >= minimumDose and

<= maxDose.

then branch of if-statement 2 is executed
• currentDose = 0.

else branch of if-statement 2 is executed
• currentDose = maxDose.

In all cases, the post conditions contradict the
unsafe condition that the dose administered is
greater than maxDose.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 24 Slide 29

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Process assurance

Process assurance involves defining a dependable
process and ensuring that this process is followed
during the system development.
As discussed in Chapter 20, the use of a safe
process is a mechanism for reducing the chances
that errors are introduced into a system.
• Accidents are rare events so testing may not find all

problems;
• Safety requirements are sometimes ‘shall not’

requirements so cannot be demonstrated through testing.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 24 Slide 30

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Safety related process activities

Creation of a hazard logging and monitoring
system.
Appointment of project safety engineers.
Extensive use of safety reviews.
Creation of a safety certification system.
Detailed configuration management (see
Chapter 29).

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 24 Slide 31

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Hazard analysis

Hazard analysis involves identifying hazards
and their root causes.
There should be clear traceability from
identified hazards through their analysis to
the actions taken during the process to
ensure that these hazards have been
covered.
A hazard log may be used to track hazards
throughout the process.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 24 Slide 32

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Hazard log entry
Hazard Log. Page 4: Printed 20.02.20
System: Insulin Pump System
Safety Engineer: James Brown

File: InsulinPump/Safety/HazardLog
Log version: 1/3

Identified Hazard Insulin overdose delivered to patient
Identified by Jane Williams
Criticality class 1
Identified risk High

 Fault tree identified YES Date 24.01.99 Location Hazard Log,
Page 5

Fault tree creators Jane Williams and Bill Smith
Fault tree checked YES Date 28.01.99 Checker James Brown

 System safety design requirements

1. The system shall include self-testing software that will test the sensor
system, the clock and the insulin delivery system.

2. The self-checking software shall be executed once per minute
3. In the event of the self-checking software discovering a fault in any of the

system components, an audible warning shall be issued and the pump
display should indicate the name of the component where the fault has
been discovered. The delivery of insulin should be suspended.

4. The system shall incorporate an override system that allows the system
user to modify the computed dose of insulin that is to be delivered by the
system.

 5. The amount of override should be limited to be no greater than a pre-set
value that is set when the system is configured by medical staff.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 24 Slide 33

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Run-time safety checking

During program execution, safety checks
can be incorporated as assertions to check
that the program is executing within a safe
operating ‘envelope’.
Assertions can be included as comments (or
using an assert statement in some
languages). Code can be generated
automatically to check these assertions.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 24 Slide 34

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Insulin administration with assertions

static void administerInsulin () throws SafetyException {

int maxIncrements = InsulinPump.maxDose / 8 ;
int increments = InsulinPump.currentDose / 8 ;

// assert currentDose <= InsulinPump.maxDose

if (InsulinPump.currentDose > InsulinPump.maxDose)
throw new SafetyException (Pump.doseHigh);

else
for (int i=1; i<= increments; i++)
{

generateSignal () ;
if (i > maxIncrements)

throw new SafetyException (Pump.incorrectIncrements);
} // for loop

} //administerInsulin

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 24 Slide 35

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Security assessment

Security assessment has something in common with
safety assessment.
It is intended to demonstrate that the system cannot
enter some state (an unsafe or an insecure state)
rather than to demonstrate that the system can do
something.
However, there are differences
• Safety problems are accidental; security problems are

deliberate;
• Security problems are more generic - many systems

suffer from the same problems; Safety problems are
mostly related to the application domain

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 24 Slide 36

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Security validation

Experience-based validation
• The system is reviewed and analysed against the types of

attack that are known to the validation team.
Tool-based validation
• Various security tools such as password checkers are

used to analyse the system in operation.
Tiger teams
• A team is established whose goal is to breach the security

of the system by simulating attacks on the system.
Formal verification
• The system is verified against a formal security

specification.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 24 Slide 37

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Security checklist

1. Do all files that are created in the application have appropriate
access permissions? The wrong access permissions may lead to these
files being accessed by unauthorised users.
2. Does the system automatically terminate user sessions after a
period of inactivity? Sessions that are left active may allow
unauthorised access through an unattended computer.
3. If the system is written in a programming language without array
bound checking, are there situations where buffer overflow may be
exploited? Buffer overflow may allow attackers to send code strings
to the system and then execute them.
4. If passwords are set, does the system check that password are
ŌstrongÕ. Strong passwords consist of mixed letters, numbers and
punctuation and are not normal dictionary entries. They are more
difficult to break than simple passwords.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 24 Slide 38

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Safety and dependability cases

Safety and dependability cases are
structured documents that set out detailed
arguments and evidence that a required
level of safety or dependability has been
achieved.
They are normally required by regulators
before a system can be certified for
operational use.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 24 Slide 39

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

The system safety case

It is now normal practice for a formal safety case to
be required for all safety-critical computer-based
systems e.g. railway signalling, air traffic control, etc.
A safety case is:
• A documented body of evidence that provides a

convincing and valid argument that a system is
adequately safe for a given application in a given
environment.

Arguments in a safety or dependability case can be
based on formal proof, design rationale, safety
proofs, etc. Process factors may also be included.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 24 Slide 40

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Components of a safety case

Component Description

System description An overview of the system and a description of its critical components.

Safety requirements The safety requirements abstracted from the system requirements
specification.

Hazard and risk
analysis

Documents describing the hazards and risks that have been identified
and the measures taken to reduce risk.

Design analysis A set of structured arguments that justify why the design is safe.

Verification and
validation

A description of the V & V procedures used and, where appropriate,
the test plans for the system. Results of system V &V.

Review reports Records of all design and safety reviews.

Team competences Evidence of the competence of all of the team involved in safety-
related systems development and validation.

Process QA Records of the quality assurance processes carried out during system
development.

Change
management
processes

Records of all changes proposed, actions taken and, where appropriate,
justification of the safety of these changes.

Associated safety
cases

References to other safety cases that may impact on this safety case.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 24 Slide 41

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Argument structure

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 24 Slide 42

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Insulin pump argument

Claim: The maximum single dose computed by the insulin pump will not exceed maxDose.
Evidence: Safety argument for insulin pump as shown in Figure 24.7
Evidence: Test data sets for insulin pump
Evidence: Static analysis report for insulin pump software
Argument: The safety argument presented shows that the maximum dose of insulin that can be

computed is equal to maxDose.
In 400 tests, the value of Dose was correctly computed and never exceeded maxDose.
The static analysis of the control software revealed no anomalies.
Overall, it is reasonable to assume that the claim is justified.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 24 Slide 43

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Claim hierarchy

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 24 Slide 44

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Key points

Reliability measurement relies on exercising the
system using an operational profile - a simulated
input set which matches the actual usage of the
system.
Reliability growth modelling is concerned with
modelling how the reliability of a software system
improves as it is tested and faults are removed.
Safety arguments or proofs are a way of
demonstrating that a hazardous condition can never
occur.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 24 Slide 45

Course: Software Engineering (F7S) Course Teacher: Dr. D. M. Akbar Hussain

Key points

It is important to have a dependable process
for safety-critical systems development. The
process should include hazard identification
and monitoring activities.
Security validation may involve experience-
based analysis, tool-based analysis or the
use of ‘tiger teams’ to attack the system.
Safety cases collect together the evidence
that a system is safe.

