

Digital Teknik / Digital Design

Underviser: D. M. Alkbar Hussain

Litteratur: Digital Design Principles \& Practices $4^{\text {th }}$ Edition by John F. Wakerly

Course Book

Dr. D. M. Alkbar Hussain
DE3 Convixa:

Basic Aim (Hovedformålet)

To enable students to apply analysis, synthesis and implementation of basic digital circuits.

Objective (Mål)

Students can make analysis and should be able to design digital circuits which is a central feature of data or electrical engineering.

Course Contents (Kursets Indhold)

-

Multi-vibrators \& Sequential circuits.
Bi-stable Circuits, Structure of Mono-stable and A-stable circuits.
Modeling , Analysis and Synthesizing of circuits.
Mealy and Moore State Machines there analysis, design and realization.
Counters and Shift Registers.

Digital Telknik / Digital Design

Modul 1

Multivibrator Circuit

A circuit which is used to build most common two state systems, for example Oscillator, Timers and flip-flops.

- Astable: Circuit is not stable in either state and continuously oscillates from one state to the other and it does not require any input, for example clock etc.
- Monostable: Obviously as the name says it can have one stable state and one unstable state and it can flip into the unstable state for a determined period, but will eventually return to the stable state. Such a circuit is useful for creating a timing period of fixed duration in response to some external event. This circuit is also known as a one shot.
- Bistable: In such a circuit it will remain in one of the two states indefinitely. The circuit can be flipped from one state to the other by an external event or trigger. This type circuit is the fundamental building block of a register or memory device. This circuit is also known as a latch or a flip-flop.

Multivibrator Circuit

。

Sequential Circuit

Depend upon current input values as well as past sequence applied.

A circuit with n binary state variables can have $\mathbf{2}^{\mathrm{n}}$ possible states.

- Always Finite

- Never Infinite

Some Basic Stuff

- What is a FSM
- It is a quintuple ($\Sigma, \mathrm{S}, \mathrm{A}, \delta, \mathrm{F}$), where:
- Σ input alphabet (a finite set of symbols)
- S finite set of states
- A an initial state, an element of S
- δ the state transition function: $\delta: S \times \Sigma \rightarrow S$
- F set of final states, a subset of S.

Example

FSMI Models

Mealy \& Moore Models

Input Actions (State \& Inputs) Entry Actions (State)

Structure of a State Machine

Clocked Synchronous State Machine
(Mealy Machine)
Next State $=F$ (current state, input)
Output $=\mathbf{G}$ (current state, input)

Structure of a State MachinéS

Clocked Synchronous State Machine
(Moore Machine)
Output $=\mathbf{G}$ (current state)

Structure of a State Machinés

Mealy Machine with Pipelined Outputs

Instruction Pipeline

Instr. No.	Pipeline Stage						
$\mathbf{1}$	IF	ID	EX	MEM	WB		
$\mathbf{2}$		IF	ID	EX	MEM	WB	
$\mathbf{3}$			IF	ID	EX	MEM	WB
$\mathbf{4}$				IF	ID	EX	MEM
$\mathbf{5}$					IF	ID	EX
Clock Cycle	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$

Various Instruction Pipelines

Micro-Architecture	Pipeline Stages
Intel P5 (Pentium)	5
Intel P6 (Pentium Pro)	14
Intel P6 (Pentium III)	10
IBM PowerPC 7	17
IBM Xenon	19
AMD Athlon	10
AMD Athlon XP	11
AMD Athlon64	12
AMD Phenom	12
AMD Opteron	15

Characteristic Equation

Describing the function of a circuit:

				Device Type	Characteristic Equation
				S-R latch	Q* $=\mathrm{S}+\mathrm{R}^{\prime} \cdot \mathrm{Q}$
				D latch	Q* $=$ D
				Edge-triggered D flip-flop	Q* $=$ D
				D flip-flop with enable	$\mathrm{Q} *=\mathrm{EN} \cdot \mathrm{D}+\mathrm{EN}^{\prime} \cdot \mathrm{Q}$
s	R	0	ON	Master/slave S-R flip-flop	Q* $=\mathrm{S}+\mathrm{R}^{\prime} \cdot \mathrm{Q}$
	0	last 0	last ON	Master/slave J-K flip-flop	$Q *=J \cdot Q^{\prime}+K^{\prime} \cdot Q$
1	\%	1	1	Edge-triggered J-K flip-flop	$Q^{*}=J \cdot Q^{\prime}+K^{\prime} \cdot Q$
1	1	0	0	T flip-flop	Q* $=Q^{\prime}$
				T flip-flop with enable	Q* $=\mathrm{EN} \cdot \mathrm{Q}^{\prime}+\mathrm{EN}^{\prime} \cdot \mathrm{Q}$

Analysis

Definition of a state machine:
Next state = F (current state, input)
Output = G (current state, input)

Dr. D. M. Alkbar Hussain
DE3 Convixa:

Evaluation

$$
\begin{aligned}
& \mathbf{D 0}=\mathbf{Q 0} E^{\prime} \mathbf{'}^{+} \mathbf{Q} 0^{\prime} \mathbf{E N} \\
& \mathbf{D 1}=\mathbf{Q 1} E N^{\prime}+\mathbf{Q} 1^{\prime} \mathbf{Q 0} \mathbf{E N}+\mathbf{Q 1} \text { Q0' EN }
\end{aligned}
$$

State Diagram

State Diagram

DE3 Cowtxa:
Department of Electronic Systems

Modified/Redrawn Logic Diagram

Timing Diagram

al 00	EN	
	0	1
00	00	01
01	01	10
10	10	11
11	11	00

Dr. D. M. Alkbar Hussain
Department of Electronic Systems

Summary

1. Determine the excitation equations for the flip-flops.
2. Substitute them into the characteristics equations to get the transition equations.
3. Use the transition equations to construct a transition table.
4. Determine the output equations.
5. Create a transition/output table.
6. Name the states.
7. Draw a state diagram

State Machine with 3 Flip-flops \& 8 states

-

DE3 CDnt 3 a:

State Diagram

Dr. D. M. Alkbar Hussain
DE3 Cbutxa:
Department of Electronic Systems

Designing a Clocked Synchronous State Machine

1. Construct a state / Output table.
2. If possible minimise the number of states.
3. Choose a set of state variable for state assignments.
4. Create a transition/output table by substituting state variable combinations into state/output table.
5. Select / Choose a flip flop, almost always it is D type flip flop.
6. Construct an excitation table, which shows the excitation values required to get to the next desired state for all possible state/input combinations.
7. Derive excitation equations from excitation table.
8. Derive output equations from the transition table.
9. Draw a logic diagram.

State Table Design

Design a clocked synchronous state machine with two inputs A, B and output Z so that Z is in state l if:

A had the same value at each of the two previous clock ticks or B has been I since the last time the firsf condition was met/true otherwise, output should be 0 .

Dr. D. M. Alkbar Hussain
DE3 Cbutxa:
Department of Electronic Systems

Design Steps

1. From this verbal description create/construct a state / Output table.
2. Minimise the number of states. The basic idea is that two or more states are equivalent if it is impossible to distinguish by observing the current and future output of the machine. Typically, these techniques are rarely used, because some time increasing the number of states simplifies the design, most engineers simplify the machine during state assignment (next step).

	$\boldsymbol{A B}$				
Q1 Q2 Q3	$\mathbf{0 0}$	$\mathbf{0 1}$	$\mathbf{1 1}$	$\mathbf{1 0}$	\boldsymbol{Z}
000	100	100	101	101	0
100	110	110	101	101	0
101	100	100	111	111	0
110	110	110	111	101	1
111	100	110	111	111	1
	Q1* Q2* Q3*				

A B					
Q1Q2Q3	00	01	11	10	Z
A	B	B	C	C	0
B	D	D	C	C	0
C	B	B	E	E	0
D	D	D	E	C	l
E	B	D	E	E	l

Possible State Assignments

Disposition of States

$$
\begin{array}{ll}
> & \text { Minimal Risk } \\
> & \text { Minimal Cost }
\end{array}
$$

Timing Diagram \& State Sequence

Synthesis using D Type Flip-Flop

Transition \& Output Table

State Machine

	$A B$				
Q1 Q2 Q3	$\mathbf{0 0}$	$\mathbf{0 1}$	$\mathbf{1 1}$	$\mathbf{1 0}$	\boldsymbol{Z}
000	100	100	101	101	0
100	110	110	101	101	0
101	100	100	111	111	0
110	110	110	111	101	1
111	100	110	111	111	1
D1D2 D3					

Excitation \& Output Table

Dr. D. M. Alkbar Hussain

DE3 Cowtxa:
Department of Electronic Systems

Excitation Maps

$\mathbf{D} 1=$ Q2' $^{\prime} \cdot \mathbf{Q 3}^{\prime}+\mathbf{Q 1}$
$\mathrm{D} 2=\mathrm{Q} 1 \cdot \mathrm{Q}^{\prime} \cdot \mathrm{A}^{\prime}+\mathrm{Q} 1 \cdot \mathrm{Q} 3 \cdot \mathrm{~A}+\mathrm{Q} 1 \cdot \mathrm{Q}^{2} \cdot \mathrm{~B}$
D3 $=\mathbf{Q} 1 \cdot \mathbf{A}+$ Q $^{\prime} \cdot \mathbf{Q 3}^{\prime} \cdot \mathbf{A}$
Z = Q1. Q2. Q3' + Q1 Q2 Q3
$\mathbf{Z}=\mathbf{Q} 1 . \mathbf{Q}^{2}$

ls-Counting Machine

Design a clocked synchronous state machine with 2 inputs \mathbf{X}, \mathbf{Y} and output Z. The output should be $\mathbf{1}$ if the number of inputs on X and Y since reset is a multiple of 4 and 0 otherwise.

		$\boldsymbol{X Y}$				
Meaning	\boldsymbol{s}	$\mathbf{0 0}$	$\mathbf{0 1}$	$\mathbf{1 1}$	$\mathbf{1 0}$	\boldsymbol{z}
Got zero 1s (modulo 4)	S 0	S 0	S 1	S 2	S 1	1
Got one 1 (modulo 4)	S 1	S 1	S 2	S 3	S 2	0
Got two 1s (modulo 4)	S 2	S 2	S 3	S 0	S 3	0
Got three 1s (modulo 4)	S 3	S 3	S 0	S 1	S 0	0
		$\mathrm{~S} *$				

Dr. D. M. Alkbar Hussain

Department of Electronic Systems

	$X Y$				
Q1 Q2	$\mathbf{0 0}$	$\mathbf{0 1}$	$\mathbf{1 1}$	$\mathbf{1 0}$	\boldsymbol{Z}
00	00	01	11	01	1
01	01	11	10	11	0
11	11	10	00	10	0
10	10	00	01	00	0
	Q1* Q2* or D1 D2				

Excitation Maps

State \& Output Table for Combination-lock Machine

Meaning	S	\boldsymbol{X}	
		0	1
Got zip	A	B, 01	A, 00
Got 0	B	B, 00	C, 01
Got 01	C	B, 00	D, 01
Got 011	D	E, 01	A, 00
Got 0110	E	B, 00	F, 01
Got 01101	F	B, 00	G, 01
Got 011011	G	E, 00	H, 01
Got 0110111	H	B, 11	A, 00
S*, UNLK HINT			

Transition/Excitation Table for Combination-lock IMachine

	\boldsymbol{x}	
Q1 Q2 Q3	$\boldsymbol{0}$	$\boldsymbol{1}$
000	001,01	000,00
001	001,00	010,01
010	001,00	011,01
011	100,01	000,00
100	001,00	101,01
101	001,00	110,01
110	100,00	111,01
111	001,11	000,00
	Q1* Q2* Q3*, UNLK HINT	

Excitation Map

-

$\mathbf{D} 1=\mathbf{Q} 1 \cdot \mathbf{Q 2}^{\prime} \cdot \mathbf{X}+\mathbf{Q} 1^{\prime} \cdot \mathbf{Q}^{2} \cdot \mathbf{Q} \mathbf{+}+\mathbf{Q 1} \cdot \mathbf{Q}^{2} \cdot \mathbf{Q}^{\prime}{ }^{\prime}$
D2 $=$ Q $^{\prime}$. Q3 $\cdot \mathbf{X}+$ Q2 2. Q3' $\cdot \mathbf{X}$

Karnaugh Maps

HINT = Q1' \cdot Q2' $^{\prime} \cdot \mathrm{Q}^{\prime} \cdot \mathrm{X}^{\prime}+\mathrm{Q} 1 \cdot \mathrm{Q}^{\prime} \cdot \mathrm{X}+\mathrm{Q}^{\prime} \cdot \mathrm{Q} 3 \cdot \mathrm{X}+\mathrm{Q}^{2} \cdot \mathrm{Q}^{2} \cdot \mathrm{X}^{\prime}+\mathrm{Q}^{2} \cdot \mathrm{Q}^{\prime} \cdot \mathrm{X}$

Spørgsmål Opgaver

