

Modul 2

Designing State Machines
 using
 State Diagrams

Designing State Machine

Designing state machine is probably the most creative task, commonly graphical design is preferred so that designers can make state diagrams.

From the state diagram one can synthesis the circuit. Making state diagram is similar to making of state table however state diagram are simpler but they are error prone.

A state table is exhaustive listing of next states for each stateinput combination.

A state diagram is set of arcs labeled with transition expressions.

Designing State Machine

We design a state machine which controls the tail lights of a 1965 Ford Thunderbird.

Flashing Sequence

Left Turn

Right Turn
\qquad

	State Diagrams	
	AMBIGOUS STATE DIAGRAM	
	WRONG STATE DIAGRAM	
те3 Cosrre	Dr. D. M. Akbar Hussai Department of Electronic Systems	6

Corrected State Diagram

Here we fix it by giving priority to Hazard, also if LEFT \& RIGHT both are asserted it will also be considered as hazard.
One problem is that if LEFT or RIGHT is asserted and than hazard is asserted the system will circle through left or right sequence and finally go to hazard.

Mutual Exclusion/All Inclusions

If there are n arcs, then there are $n(n-1) / 2$ logical products to be evaluated.

For each state logical sum of the transition expression on all arcs leaving that state should be 1 .

Verifying if a state diagram is ambiguous is quite difficult, typically, state machines with large number of states normally don't have lots of arcs leaving each state so it is a trade off.

Enhanced State Diagram

If you have pressed LEFT and say it is in state L2 and then if you press HAZ now the system will cycle through L3 before it finally execute HAZ. So we need to fix the problem because logically when hazard is asserted the system should immediately go to hazard.

Transition List

State	$\boldsymbol{0 2}$	$\boldsymbol{0 1}$	$\boldsymbol{0} 0$
IOLE	0	0	0
L1	0	0	1
L2	0	1	1
L3	0	1	0
R1	1	0	1
R2	1	1	1
R3	1	1	0
LR 3	1	0	0

Synthesis using Transitions

The process after Creativity: which ends with state diagram and state assignments.
Synthesis can be made using CAD.
Transition list is used in doing synthesis by hand.
Main Purpose is understanding the internal operations.

Transition Equation

Transition table for next state variable (Hybrid Canonical Sum):

$$
V^{*}=\sum_{\text {transition-list-rows-where- } V^{*}=1} \quad(\text { Transition }-p-\text { term })
$$

s	Q2	Q1	00	Transition Expression	s*	Q2*	Q1*	Q0 *
IDLE	0	0	0	(LEFT + RIGHT + HAZ) ${ }^{\prime}$	IDLE	0	0	0
IDLE	0	0	0	LEFT - HAZ' \cdot RIGHT ${ }^{\prime}$	L1	0	0	1
IDLE	0	0	0	HAZ +LEFT RIGHT	LR3	1	0	0
IDLE	0	0	0	RIGHT \cdot HAZ' \cdot left ${ }^{\prime}$	R1	1	0	1
L1	0	0	1	HAZ'	L2	0	1	1
L1	0	0	1	HAZ	LR3	1	0	0
L2	0	1	1	HAZ'	L3	0	,	0
L2	0	1	1	HAZ	LR3	1	0	0
L3	0	1	0	1	IDLE	0	0	0
R1	1	0	1	HAZ'	R2	1	,	1
R1	1	0	1	HAZ	LR3	1	0	0
R2	1	1	1	HAZ'	R3	1	1	0
R2	1	1	1	HAZ	LR3	1	0	0
R3	1	1	0	1	IDLE	0	0	0
LR3	1	0	0	1	IDLE	0	0	0

Excitation Equation

Transition equation for a state variable:
$\mathbf{Q}_{\mathbf{i}}{ }^{*}=$ expression

Excitation equation for the corresponding input:
$D_{i}=$ expression

As we are using D type flip flop for memory elements so it is trivial to derive from the transition equations.

Correct Guessing Game

Transition List

Current State				Transition Expression	Next State				Output					
s	02	01	00		s	02	01	00		41	L2	13	14	ERR
S1	0	0	0	G1'. G^{2} ' $63^{\prime} \cdot \mathrm{G4} 4^{\prime}$	S2	0	0	1		1	0	0	0	0
S1	0	0	0	61- $\mathrm{Cr}^{\prime} \cdot \mathrm{C3} \cdot 3^{\prime} 4^{\prime}$	sok	1	0	0		1	0	0	0	0
S1	0	0	0	G2+G3+G4	SERR	1	0	1		1	0	0	0	0
52	0	0	1	G1'. $62^{\prime} \cdot G 3^{\prime} \cdot G 4^{\prime}$	53*	0	* I	* 1	*	0	1	0	0	0
52	0	0	1	G1'. G2- G3'. $9^{\prime}{ }^{\prime}$	sok	1	0	0		0	1	0	0	0
52	0	0	1	G1+G3+G4	SERR	1	0	I		0	1	0	0	0
s3	0	1	1	G1'. $\mathrm{G}^{\prime} \cdot \mathrm{G3} \cdot \mathrm{G4}{ }^{\prime}$	54	0	1	0		0	0	1	0	0
s3	0	1	1	61'. $62^{\prime} \cdot 63 \cdot 64^{\prime}$	sok	1	0	0		0	0	1	0	0
s3	0	1	1	$\mathrm{G1}+\mathrm{G} 2+\mathrm{C4}$	SERR	1	0	1		0	0	1	0	0
st	0	1	0		S1	0	0	0		0	0	0	1	0
S4	0	1	0	G1' $\mathrm{G2}^{\prime}$ - $63^{\prime} \cdot \mathrm{G4}$	sok	1	0	0		0	0	0	1	0
St	0	1	0	$\mathrm{G} 1+\mathrm{Gz}+\mathrm{G3}$	SERR	1	0	1		0	0	0	1	0
sok	1	0	0	61+ $\mathrm{Cr}_{2}+63+64$	sok	1	0	0		0	0	0	0	0
sok	1	0	0			0	0	0		0	0	0	0	0
SERR	1	0	1	$\mathrm{G} 1+\mathrm{G} 2+\mathrm{a3}+\mathrm{G4}$	SERR	1	0	1		0	0	0	0	1
SERA	1	0	1	$61^{\prime} \cdot 62^{\prime} \cdot 63^{\prime} \cdot 64^{\prime}$	S1	0	0	0		0	0	0	0	1

As there are 6 states so we need 3 flip flop to design such a machine, some (2) states will be unused.
Write down the Transition equations for $\mathrm{Q} 0^{*}, \mathrm{Q} 1^{*} \& \mathrm{Q} 2^{*}$.
 G 4 ') [corresponding to the line $4 \& 7$ where $\mathrm{Q} 0^{*}$ is 1]
Write down also the output equations as it is Moore machine so output equations are independent of transition expressions:
For example L1 = Q2'. Q1'. Q0'Dr. D. M. Akbar Hussain

Guessing Game

Unused States: We assume that they have 0 in the corresponding columns when we write equations for $\mathbf{Q *}$ as a sum of p-terms.

As a consequence all such states are coded as 100 corresponding to SOK, which is a safe option.

For small problems when we develop excitation equations using karnaugh map for minimization and putting a d in all don't care cells is ok, however, larger problems cannot be taken cared by karnaugh map, commercially available logic minimization tools are available to deal with larger problems.

Output Coded State Assignments.

Current State						Transition Expression	Next State					
s	$L 1$	L2	L3	L4	ERR		s	L1*	L2.	L3*	L4.	ERR*
S1	1	0	0	0	0	G1 ${ }^{\prime} \cdot \mathrm{G2}^{\prime} \cdot \mathrm{G3}^{\prime} \cdot \mathrm{G} 4^{\prime}$	S2	0	1	0	0	0
S1	1	0	0	0	0	G1. G2' $\mathbf{G 3}^{\prime} \cdot \mathrm{G4}^{\prime}$	SOK	0	0	0	0	0
S1	1	0	0	0	0	$\mathrm{G} 2+\mathrm{G} 3+\mathrm{G} 4$	SERR	0	0	0	0	1
S2	0	1	0	0	0	$\mathrm{G1} 1^{\prime} \cdot \mathrm{G2}^{\prime} \cdot \mathrm{G3}^{\prime} \cdot \mathrm{G4}^{\prime}$	S3	0	0	1	0	0
S2	0	1	0	0	0	G1 ${ }^{\prime}$. G2 - G3' ${ }^{\prime}$ G4 ${ }^{\prime}$	SOK	0	0	0	0	0
S2	0	1	0	0	0	$\mathrm{G} 1+\mathrm{G} 3+\mathrm{G} 4$	SERR	0	0	0	0	1
S3	0	0	1	0	0	$\mathrm{G1} 1^{\prime} \cdot \mathrm{G2}^{\prime} \cdot \mathrm{G} 3^{\prime} \cdot \mathrm{G} 4^{\prime}$	S4	0	0	0	1	0
S3	0	0	1	0	0	G1'. G2' ${ }^{\prime}$ G3. G4 ${ }^{\prime}$	SOK	0	0	0	0	0
S3	0	0	1	0	0	$\mathrm{G} 1+\mathrm{G} 2+\mathrm{G} 4$	SERR	0	0	0	0	1
S4	0	0	0	1	0	$\mathrm{G1} 1^{\prime} \cdot \mathrm{G2}^{\prime} \cdot \mathrm{G3}^{\prime} \cdot \mathrm{G4}^{\prime}$	S1	1	0	0	0	0
S4	0	0	0	1	0	G11 ${ }^{\prime} \mathrm{G2}^{\prime} \cdot \mathrm{G3}^{\prime} \cdot \mathrm{G4}$	SOK	0	0	0	0	0
S4	0	0	0	1	0	$\mathrm{G} 1+\mathrm{G} 2+\mathrm{G} 3$	SERR	0	0	0	0	1
sok	0	0	0	0	0	$\mathrm{G} 1+\mathrm{G} 2+\mathrm{G} 3+\mathrm{G} 4$	SOK	0	0	0	0	0
sok	0	0	0	0	0	$\mathrm{G1} 1^{\prime} \cdot \mathrm{G2}^{\prime} \cdot \mathrm{G} 3^{\prime} \cdot \mathrm{G4}^{\prime}$	S1	1	0	0	0	0
SERR	0	0	0	0	1	$\mathrm{G}_{1}+\mathrm{G}_{2}+\mathrm{G} 3+\mathrm{G}_{4}$	SERR	0	0	0	0	1
SERR	0	0	0	0	1	$\mathrm{G1}{ }^{\prime} \cdot \mathrm{G2}^{\prime} \cdot \mathrm{G3}^{\prime} \cdot \mathrm{G4}{ }^{\prime}$	S1	1	0	0	0	0

As the machine is a Moore machine meaning output is dependent on state only, we can use the output as state variables this type of output coded state assignment could result in simpler excitation equations. For example for L1*
 $\mathrm{G4}^{\prime}$) $+\mathrm{L} 1^{\prime}$. L2'. L3'. L4'. ERR . (G1'. G2'. G3'. G4')
Compare with earlier, ERR is the worst having 16 terms.
Dr. D. M. Akbar Hussain
Department of Electronic Systems

Current Assignments using Don't care

State	L1	L2	L3	L4	ERR
S1	1	x	x	x	x
S2	0	1	x	x	x
S3	0	0	1	x	x
S4	0	0	0	1	x
SOK	0	0	0	0	0
SERR	0	0	0	0	1

As there are 5 state variables so possible states are 32 but we are only using 6 , so rest of the states are unused and have a next state 00000 (SOK).

Transition List using Don't cares state coding

Current State						Transition Expression	Next State					
s	L1	L2	L3	L4	ERR		s	L1*		L3*	L4*	ERR*
S1	1	x	x	x	x	G1'. G2'. G3'. G4'	S2	0	1	0	0	0
S1	1	x	x	x	x	G1. G2'. G3' $\mathbf{G 4}^{\prime}$	SOK	0	0	0	0	0
S1	1	x	x	x	x	$\mathrm{G} 2+\mathrm{G} 3+\mathrm{G} 4$	SERR	0	0	0	0	1
S2	0	1	x	x	x	G1'. G2'. G3'. G4'	S3	0	0	1	0	0
S2	0	1	x	x	x	G1'. G2. G3'. G4'	SOK	0	0	0	0	0
S2	0	1	x	x	x	$\mathrm{G} 1+\mathrm{G} 3+\mathrm{G} 4$	SERR	0	0	0	0	1
S3	0	0	1	x	x	G1'. G2'. G3- G4'	S4	0	0	0	1	0
S3	0	0	1	x	x	G1'. G2'. G3. G4'	SOK	0	0	0	0	0
S3	0	0	1	x	x	$\mathrm{G} 1+\mathrm{G} 2+\mathrm{G} 4$	SERR	0	0	0	0	1
S4	0	0	0	1	x	G1'. G2'. G3'. G4'	S1	1	0	0	0	0
S4	0	0	0	1	x	G1'. G2'. G3'. G4'	SOK	0	0	0	0	0
S4	0	0	0	1	x	$\mathrm{G} 1+\mathrm{G} 2+\mathrm{G} 3$	SERR	0	0	0	0	1
SOK	0	0	0	0	0	$\mathrm{G} 1+\mathrm{G} 2+\mathrm{G} 3+\mathrm{G} 4$	SOK	0	0	0	0	0
SOK	0	0	0	0	0	G1'. G2'. G3'. G4'	S1	1	0	0	0	0
SERR	0	0	0	0	1	$\mathrm{G} 1+\mathrm{G} 2+\mathrm{G} 3+\mathrm{G} 4$	SERR	0	0	0	0	1
SERR	0	0	0	0	1	G1'. G2'. G3' $3^{\prime} 4^{\prime}$	S1	1	0	0	0	0

State Assignment

Decomposing State Machines

State Machine Decomposition based on the similar concept to decompose the larger problem to conceptualize, design and debug.
Therefore, state machine decomposition can be used to analyze any given monolithic state machine to determine if it can be realized, design and debug as a collection of smaller units.

Dr. D. M
Department of Electronic Systems

Random Delay in Guessing Game

A random number generated routine is used to generate a random number which is pushed into the linear feedback shift register, that makes the sequence random and it is difficult for a person to guess which button to press.

Analysis for Feedback Sequential Circuits

$-$
0)

All switching circuits belong to one of two classes: combinational or sequential. On contrary to combinational logic circuits, the operation of sequential ones is dependent not only on the present state of external inputs, but also on the state of these inputs in past. Therefore, sequential logic circuits are sometimes referred to as circuits with memory.

Feedback Analysis for D Latch

$\mathrm{Y}^{*}=(\mathrm{C} \cdot \mathrm{D})+\left(\mathrm{C} \cdot \mathrm{D}^{\prime}+\mathrm{Y}^{\prime}\right)^{\prime}=\mathrm{C} \cdot \mathrm{D}+\left(\mathrm{C}^{\prime}+\mathrm{D}\right) \cdot \mathrm{Y}=\mathrm{C} \cdot \mathrm{D}+\mathrm{C}^{\prime} \cdot \mathrm{Y}+\mathrm{D} \cdot \mathrm{Y}$

Transition Table for D latch $\int_{\text {Sm }}$

	$C D$			
	00	01	11	10
0	0	0	1	0
1	1	1	1	0
	Y^{*}			

$$
\mathrm{Y}^{*}=\mathrm{C} \cdot \mathrm{D}+\mathrm{C}^{\prime} \cdot \mathrm{Y}+\mathrm{D} \cdot \mathrm{Y}
$$

The Y output can be 0 or 1 , so we substitude first 0 and then substituting C and D according to the table above to get Y^{*}, similarly we can do it for $\mathrm{Y}=1$.

Some Definitions

TOTAL STATE: This is a particular combination of internal state and input present.

STABLE TOTAL STATE: This is a combination of internal state and input present such that the next internal state predicted by the transition table is the same as the current internal state.

UNSTABLE TOTAL STATE: This is a combination of internal state and input present such that the next internal state predicted by the transition table is NOT the same as the current internal state.

Total State Table

	C D				
S	00	01	11	10	
S0	S0	S0	S 1	So	
S1	S 1	S 1	S 1	So	
		S^{*}			

\qquad
Y^{*}

We can name the states as shown in the bottom table and according to the definition of stable total state, states are circled to show stable states.

State \& Output Table

To complete the analysis we must determine how the output behaves as a function of internal state and inputs. Q and QN are output and not state variables, the state variable is only one which is Y .

	CD			
S	00	01	11	10
SO	$\mathrm{SO}, 01$	$\mathrm{SO}, 01$	$\mathrm{~S} 1,11$	$\mathrm{So}, 01$
S 1	$\mathrm{~S} 1,10$	$\mathrm{~S} 1,10$	$\mathrm{~S} 1,10$	$\mathrm{~S} 0,01$
	$\mathrm{~S} *, \mathrm{Q} \mathrm{QN}$			

$\mathrm{Q}=\mathrm{C} . \mathrm{D}+\mathrm{C}^{\prime} . \mathrm{Y}+\mathrm{D} . \mathrm{Y}$
$\mathrm{QN}=\mathrm{C} \cdot \mathrm{D}^{\prime}+\mathrm{Y}^{\prime}$

Dr. D. M. Alkbar Hussain
Department of Electronic Systems

Analysis

	CD			
S	00	01	11	10
S 0	$\mathrm{SO}, 01$	$\mathrm{~S} 0,01$	$\mathrm{~S} 1,11$	$\mathrm{SO}, 01$
S 1	$\mathrm{~S} 1,10$	$\mathrm{~S} 1,10$	$\mathrm{~S} 1,10$	$\mathrm{~S} 0,01$
	$\mathrm{~S} *, \mathrm{Q} \mathrm{QN}$			

Any given time the circuit is in a particular internal state and a particular input is applied to it, which is called the total state of the input.

Let us start in the stable total state $\mathrm{S} 0 / 00(\mathrm{~S}=\mathrm{S} 0, \mathrm{CD}=00)$, suppose we change D to 1 , so the system moves to right as shown by arrow in the diagram which is stable total state although D is different, now suppose we change C to 1 , so system moves to right and goes to S 1 which is unstable total state so it sends it to downwards into the total stable state S1, it is because it has to settle down to a stable total state. This way we can trace the behaviour of the circuit for any desired sequence of single input changes.

Multiple Input Changes

Simultaneous changes in the input occurs due to varying delays in the circuit. Suppose we are in stable state $\mathrm{S} 1 / 11$ and we change C and D both to 0 . See where system end up.

As in this case it is unpredictable in to which state system will be, however not all simultaneous changes can send system into unpredictable state, for example if you are in $\mathrm{S} 0 / 00$ and you change C and D from 0 to 1 , you always end up in $\mathrm{S} 1 / 11$.

Multiple Feedback Loops

-0

Transition Table

	CLK D			
Y1 Y2 Y3	00	01	11	10
000	010	010	000	000
001	011	011	000	000
010	010	110	110	000
011	011	111	111	000
100	010	010	111	111
101	011	011	111	111
110	010	110	111	111
111	011	111	111	111
		$\mathrm{Y} 1 * \mathrm{Y} 2 * \mathrm{Y} 3^{*}$		

Circled states are stable states as the next internal state predicted by the transition table is the same as the current internal state.

Dr. D. M. Alkbar Hussain

DE3 Cbutxa:
Department of Electronic Systems

Non-critical Race

		CLK D			
	Y1 Y2 Y3	00	01	11	
000	010	010	000	10	
001	011	011	000	000	
010	010	110	110	000	
011	011	111	111	000	

Race Concept: Changing of a single input variable bring multiple changes in the internal variables.
For example see 4 th $(011 / 00)$ line changing of CLK from 0 to 1 , bring changes from 011 to 000 (2 variable change). As we know that simultaneous changes does not really occur in logic circuits so the internal states may change as shown in figure through 2 different paths;
$011 \rightarrow 010 \rightarrow 000$ or $011 \rightarrow 001 \rightarrow 000$. This means the circuit temporarily visit certain states before ending in a same stable state. Since the final state does not depend on the order in which the state variable change so it is non critical race.
Dr. D. M. Akbar Hussain

Critical Race

	CLK D			
Y1 Y2 Y3	00	01	11	10
000	010	010	000	000
001	011	011	000	000
010	010	110	110	110
011	011	111	111	000
100	010	010	111	111
101	011	011	111	111
110	010	110	111	111
111	011	111	111	111

Suppose the entry at $010 / 10$ is changed to $110 / 10$ as shown in figure. This time the system can end up in two different states as shown by arrows.

State \& Output Table

The above table shows the states with names and output.

Flow \& Output Table

	CLK D			
S	00	01	11	10
S0	S2, 01	S6 , 01	(S0), 01	(S0),01
S2	(S2), 01	S6, 01	-, -	S0, 10
S3	(S3), 10	S7, 10	-,	S0, 01
S6	S2, 01	(S6), 01	S7, 11	-, -
S7	S3 , 10	(S7), 10	(57), 10	(S7), 10
		S*,	Q QN	

A flow table eliminates multiple hops and shows only ultimate destination. Also it eliminates rows for unused internal states, ones which are stable for no input combination. You can see that row 2, $5 \& 6$ are eliminated.

Dr. D. M. Akbar Hussain
Department of Electronic Systems

Flow \& Output Table Edge Triggered

For example if you start in $\mathrm{S} 0 / 10$ and you change D from 0 to 1 so you move to left $\mathrm{S} 0 / 11$, and if D is changed now from 1 to 0 so you will move back and forth between these states. Similarly one can interpret other arrows with different changes in the input conditions.

Reduced Flow \& Output Table

Although flow and output tables is simple, it can further improve as reduced flow table by minimization through combining compatible states, so in this case row 1 and row 2 of the flow table is combined as above.

Dr. D. M. Alkbar Hussain

Department of Electronic Systems

Analysis

Y1* $=$ CLK $^{\prime}$. D' + CLK . Y1

$$
\mathrm{Y} 2^{*}=\mathrm{CLK} \cdot \mathrm{Y} 1^{\prime}+\mathrm{CLK}^{\prime} . \mathrm{Y} 2
$$

Similarly circuit like above can also be analysed in similar fashion described earlier.

Design of Feedback Sequential Circuits

Design of feedback sequential circuit is typically hard problem however, certain circuits may be easy to design. Any circuit with one feedback loop is just a variation of an SR or D latch. The general structure is shown given below by the equation.

$$
Q^{*}=(\text { forcing Term })+(\text { Holding Term }) . Q
$$

Dr. D. M. Alkbar Hussain

Department of Electronic Systems

Latches

$$
\mathrm{Q}^{*}=\mathrm{C} \cdot \mathrm{D}+\mathrm{C}^{\prime} \cdot \mathrm{Q}
$$

$\mathrm{Q}^{*}=\mathrm{S}+\mathrm{R}^{\prime} . \mathrm{Q}$ in this case S is forcing term where as R^{\prime} is holding term. $\mathrm{Q}^{*}=\mathrm{C} . \mathrm{D}+\mathrm{C}^{\prime} . \mathrm{Q}$ in this case you can see both C and D are forcing terms and C^{\prime} has become holding term.

These latches are not hazard free. If for example suppose D and Q are $1, \mathrm{C}$ is changing from 1 to 0 , the circuit should latch a 1 , but the top AND gate output goes to zero, before the bottom AND gate goes to 1, so OR gate output becomes 0 first.

Karnaugh Maps

$Q *=C \cdot D+C^{\prime} \cdot Q$

$\mathrm{Q}^{*}=\mathrm{C} \cdot \mathrm{D}+\mathrm{C}^{\prime} \cdot \mathrm{Q}+\mathrm{D} \cdot \mathrm{Q}$

This latch can be made Hazard free by using the Karnaugh map as above on right, with the introduction of the extra term in the equation guarantees proper operation.

Hazard Free Latch Diagram

$$
\mathrm{Q}^{*}=\mathrm{C} \cdot \mathrm{D}+\mathrm{C}^{\prime} \cdot \mathrm{Q}+\mathrm{D} \cdot \mathrm{Q}
$$

Feedback sequential circuits are obviously complex and difficult to design compared with latches, typically the word description is converted into flow table. Let us design the circuit if we are given the above timing diagram. Intially it is assumed that both P and R are 0 , so it is an IDLE state.

Dr. D. M. Alkbar Hussain

Flow Table

		P R			
Meaning	S	00	01	11	10
Idle, waiting for pulse	IDLE				0
Reset, no pulse	RES1			0	
Got pulse, output on	PLS1		1		
Reset, got pulse	RES2		0		
Pulse gone, output on	PLS2			1	
Got pulse, output off	PLSN			0	

RES1: When R goes from 0 to 1 , the system may still be in the IDLE state, which means that there would be 2 stable states in the same row, typically one avoids that in the primitive flow table, so a new state RES1.
PLS1: In the IDLE state when P goes from 0 to 1 , system goes to PLS1 state and output is 1 . RES2: When R is 1 and P goes from 0 to 1 .
PLS2: This state occurs when P goes away (1 to 0).
PLSN: This state occurs when RESET goes away

Flow Table

Meaning	S	P R				Z
		00	01	11	10	
Idle, waiting for pulse	IDLE	(IDLE	RES1	-	PLS1	0
Reset, no pulse	RES1	IDLE	RES1	RES2	-	0
Got pulse, output on	PLS1	PLS2	-	RES2	PLS1	1
Reset, got pulse	RES2	-	RES1	RES2	PLSN	0
Pulse gone, output on	PLS2	PLS2	RES1	-	PLS1	1
Got pulse, output off	PLSN	IDLE	-	RES2	PLSN	0

Now with different input conditions which results into various transitions we can fill up the primitive flow table. The stable states are also marked with circles.

Dr. D. M. Akbar Hussain

Flow Table Minimization

Typically, primitive flow table has more states than required, there are formal methods to minimize the number of states which generally quite complicated. However, in the above example the table is small and not complicated so giving the opportuniy to do minimization by hand. IDLE and RES1 are compatible so or PLS1 \& PLS2, RES2 \& PLSN respectively so they are combined.

Race-Free State Assignments

The states are named in the above table and we need to find any critical race condition, we can find the critical race condition through state adjacency diagram for the above table.

Dr. D. M. Akbar Hussain

State Assignment

The Adjacency diagram is simplified state diagram that omits self loops and does not show two way transitions for example $\mathrm{A} \rightarrow \mathrm{B}$ and $\mathrm{B} \rightarrow \mathrm{A}$. So the Adjacency diagram for the table shown on the previous slide is above on the left. States are said to be adjacent if there is an arc between them, for race free transition these adjacent states must differe by only one bit. As there are 8 possible trasition counting both ways.

Pulse Catcher Adjacency Diagrams

So as we can see there are 3 states top left table (Adjacency diagram is shown in "a") and there is no way to map this on a 2-cube, so we redesign and create a new state RESA (top right table) which is basically an unstable state and system make transition and end up in RES stable state, the modified adjacency diagram is shown in "b" and subsequent race free assignments in "c".

Dr. D. M. Alkbar Hussain
Department of Electronic Systems

Worst Case Scenario

0°
(a)

(b)

If in the extreme case every state is adjacent to every other state as shown above "a" then it cannot be mapped on 2 cube, it has to be mapped on 3 cube to have race free assignments as shown above in "b".

Race Free Transition Table

-0

	P R				
Y 1 Y 2	00	01	11	10	Z
00	00	00	10	01	0
01	01	00	11	01	1
11	-	-	10	-	-
10	00	00	10	10	0
	$\mathrm{Y} 1 * \mathrm{Y} 2 *$				

The above table shows the transition table with don't care which along side with next state and output entries can be used in the corresponding Karnaugh maps to simplify the circuits excitation and output logic.

Essential Hazards

A fundamental mode circuit must satisfy the following requirements for proper and reliable operation:

- Only one input signal may change at a time.
- There must be propagation delay through the excitation logic and feedback paths, maximum must be less than the time between successive input changes.
- The state assignment (transition table) must be free of critical races.
- The excitation logic must be hazard free.
- The minimum propagation delay through the excitation logic and the feedback paths must be greater than the maximum timing skew through the "input logic".

Transition Table with Essential Hazards

Essential hazard can be found in most but not all fundamental mode circuits. The pusle catcher circuit table shown above has an essential hazard starting in internal state " 10 " with $\mathrm{PR}=10$.

Physical Conditions

