FP4-1
 Analog Electronics
 \&
 Actuators

Objectives:

To enable students to apply basic knowledge of analog electronics and actuators for constructing hardware systems.

Contents:

Analog Electronics

o Diodes, PN-junction, small-signal model
o Rectifiers, filtering and stabilization
o Practical operational amplifier circuits, common-mode rejection ratio, slew-rate
o Bipolar junction transistor basics, DC-analysis, signal amplification, small-signal model
o Properties of the transistor
o Frequency response of the transistor amplifier
o MOSFET transistor

Electrical Actuators

o Electromechanical energy conversion. General principle, Work, forces, torque, efficiency etc. for electric machines.
o DC-motors. DC-machine construction, characteristics, dynamic models and applications. Motor drivers

Contents

- Schedule
- Slides
- Useful Links
- Any other Matter \& Related Material

Oxford University Press
Oxford New York
Auckland Bangkok Buenos Aires Cape Town Chennai
Dar es Salaam Delhi Hong Kong Istanbul Karachi Kolkata
Kuala Lumpur Madrid Melbourne Mexico City Mumbai Nairobi
São Paulo Shanghai Taipei Tokyo Toronto
Copyright © 2004 by Oxford University Press, Inc.
ublished by Oxford University Press, Inc.
98 Madison Avenue, New York, New York 10016
www.oup.com
Oxford is a registered trademark of Oxford University Press
All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise,
without the prior permission of Oxford University Press.

ISBN 0-19-517267-1

Printing number: 987654321
Printed in the United States of America

Diodes

Lecture \# 1

The Ideal Diode

(a)
$\xrightarrow[+]{\text { Anode }}$

(b)
(c)

(d)

Forward / Reversed Biased

(a)

(b)

The Rectifier

(a)

(c)

(b)

(d)

(e)

Figure 3.3 (a) Rectifier circuit. (b) Input waveform. (c) Equivalent circuit when $v_{I} \geq 0$. (d) Equivalent circuit when $v_{I} \leq 0$. (e) Output waveform.

Exercise 3.1

For the circuit (a) sketch the transfer characteristics $V o$ versus $v i$.

(a)

(b)

Exercise 3.2 \& 3.3

For the circuit (a) sketch the waveform of V_{D}.

(a)

(b)

Example 3.1

For the circuit (a) find the fraction of the cycle during which diode conducts, peak value of the diode current and the maximum reverse bias voltage across diode.

(a)

(b)

Diode Logic Gates

(a)

(b)

Example 3.2: Calculate V \& I

$\mathrm{I}+1=(0-(-10)) / 5 * 10^{3}$
$=2$
I $\quad=2-1=1 \mathrm{~mA}$

(a)

Example 3.2: Calculate V \& I

(b)

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{D} 2}=(10-0) / 5 * 10^{3} \\
&= 2 \mathrm{~mA} \\
& \mathrm{I}+2=(0-(-10)) / 10 * 10^{3} \\
&=1 \\
& \mathrm{I}=1-2=-1 \mathrm{~mA} \\
& \\
& \mathrm{I}_{\mathrm{D} 2}=(10-(-10)) / 15 * 10^{3} \\
&=1.33 \mathrm{~mA} \\
& \mathrm{~V}_{\mathrm{B}}=-10+\left(10 * 10^{3} * 1.33 * 10^{-3}\right) \\
& \mathrm{V}_{\mathrm{B}}=3.3 \mathrm{~V}
\end{aligned}
$$

Exercise 3.4: Calculate V \& I

(a)
2.0 mA
2.0 mA
0 V

(b)

(c)

(d)

$$
0.0 \mathrm{~mA}
$$

2.0 mA

Exercise 3.4: Calculate V \& I

Exercise 3.5:

Calculate R , that result full scale reading when the input sine wave voltage is 20 V p-p. The meter gives full scale reading when the average current flowing through it is 1 mA , coil has 50 ohm resistance. (Hint: The average value of half wave rectifier is Vp / π.)

Terminal Behaviour/Characteristics

Dr. D. M. Akbar Hussain

i-v Characteristics

Dr. D. M. Alkbar Hussain

Copyright © 2004 by Oxford University Press, Inc.

Exercises: 3.6, 3.7 \& 3.8

3.6: Consider a silicon diode with $\mathrm{n}=1.5$, Find the change in voltage if the current changes from 0.1 mA to 10 mA
3.7: A silicon junction diode with $\mathrm{n}=1$ has $\mathrm{v}=0.7 \mathrm{~V}$ at $\mathrm{i}=1 \mathrm{~mA}$. Find the voltage drop at $\mathrm{i}=0.1 \mathrm{~mA}$ and $\mathrm{i}=10 \mathrm{~mA}$.
3.8: Using the fact that silicon diode as $\mathrm{I}_{\mathrm{S}}=10^{-14} \mathrm{~A}$ at $25^{\circ} \mathrm{C}$ and I_{S} increases by 15% per ${ }^{\circ} \mathrm{C}$ rise in temperature, find the value of I_{S} at $125^{\circ} \mathrm{C}$.

Reverse Bias Region

The reverse current is due to leakage effects, which is proportional to the junctions area and its dependence on temperature, which is different from saturation current as in this case it doubles with every 10 degree rise in temperature.

Dr. D. M. Akbar Hussain

Exercise 3.9

If $\mathrm{V}=1 \mathrm{v}$ at $20^{\circ} \mathrm{C}$, find the value of V at $40^{\circ} \mathrm{C}$ and at $0^{\circ} \mathrm{C}$

Breakdown Region

Dr. D. M. Akbar Hussain

Modelling Forward Charcteristics

Following simple circuit used to illustrate the analysis of circuits in which the diode is forward conducting.

Exponential Model is the most accurate, but the trouble is it is severely?
Assuming V_{DD} greater than cut in voltage 0.5 , so

$$
I_{D}=I_{S} e^{V_{D} / n V_{T}}
$$

Applying Kirchhoff loop equation:

$$
I_{D}=\frac{V_{D D}-V_{D}}{R}
$$

Both equations have 2 unknown quantities?
So how to get to the solution? Graphical or Iterative

Graphical Analysis Using Exponential Model

Iterative Analysis Using Exponential Model

Suppose $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{R}=1 \mathrm{~K} \Omega$ in the above circuit to determine I_{D} and V_{D} using iterative analysis. Assume diode current 1 mA at a voltage of 0.7 , which changes by 0.1 V for every decade change in current.

$V_{2}-V_{1}=2.3 * n * V_{T} \log \left(\frac{I_{2}}{I_{1}}\right)$

$2.3 * \mathrm{n} * \mathrm{~V}_{\mathrm{T}}=0.1$
Dr. D. M. Mlkar Hussain
Copyright © 2004 by Oxford University Press, Inc. Department of Electronic Systems

Rapid Analysis

\square What is the advantage of Rapid Analysis?

- Why we do Rapid Analysis?

Piecewise Linear Model

Difference is about 50 mV
(over current range $0.1 \mathrm{~mA}-10 \mathrm{~mA}$)
$i_{D}=0, v_{D} \leq V_{D 0}($ straight line $A)$
$i_{D}=\left(v_{D}-V_{D 0}\right) / r_{D}, \quad v_{D} \geq V_{D 0}($ straight line $B)$

Slope $=Y / X=5 \mathrm{~mA} / 0.1 \quad V=0.05$
$r_{D}=1 /$ Slope $=20 \Omega$
$V_{D 0}=0.65 \mathrm{~V}$

Dr. D. M. Akbar Hussain
Copyright $\odot 2004$ by Oxford University Press, Inc.

Equivalent Circuit for Piecewise Linear Model

$i_{D}=\left(V_{D}-V_{D 0}\right) / r_{D}$
Battery-Plus Resistance Model

Example 3.5

Suppose $\mathrm{R}=1 \mathrm{~K} \Omega, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D} 0}=0.65, \mathrm{r}_{\mathrm{D}}=20 \Omega$.

$$
\begin{aligned}
& i_{D}=\left(V_{D D}-V_{D 0}\right) / R+r_{D} \\
& V_{D}=V_{D 0}+I_{D} r_{D}
\end{aligned}
$$

Constant Voltage Drop Model

Equivalent Circuit

(a)
$i_{D}=\left(V_{D D}-V_{D 0}\right) / R$
$=(5.0-0.7) / 1=4.3 \mathrm{~mA}$

(b)

(which is not different what we had for piecewise linear model)

Exercises: 3.10

Suppose $\mathrm{R}=10 \mathrm{~K} \Omega, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}$, Assuming that the diode has a voltage drop of 0.7 V at a curren 0.1 mA and the voltage changes by $0.1 \mathrm{~V} /$ decade of current change. Use the following to calculate I_{D} and V_{D}.
(a): Iteration
(b): Piecewise linear model $\mathrm{V}_{\mathrm{D} 0}=0.65, \mathrm{r}_{\mathrm{D}}=20 \Omega$.
(c): Constant voltage model with $\mathrm{V}_{\mathrm{D}}=0.7 \mathrm{~V}$.

Dr. D. M. Akbar Hussain

Exercises: 3.11

 Consider a diode that is 100 times as large (in junction area), if we approximate the characteristics as shown below over a range of current 100 times as large, how would the model parameters $\mathrm{V}_{\mathrm{D} 0}$ and r_{D} change.
Exercises: 3.12

 across diodes is 0.7 V at 1 mA and that $\Delta \mathrm{V}=0.1 \mathrm{~V} /$ decade change in current.

Exercises: 3.13

Use the constant voltage drop model $(0.7 \mathrm{~V})$ on the following circuits to obtain better estimates of ${ }^{\hat{S}_{\text {SUER }}}$ current (I) and voltage (V).

Home work:

Problem: 3.1, 3.2, 3.3, 3.4, 3.5, 3.7, 3.8

