

Example 4.9

It is required to design the circuit of Fig. 4.30(c) to establish a dc drain current $I_D = 0.5$ mA. The MOSFET is specified to have $V_t = 1$ V and $k'_n W/L = 1$ mA/V². For simplicity, neglect the channel-length modulation effect (i.e., assume $\lambda = 0$). Use a power-supply $V_{DD} = 15$ V. Calculate the percentage change in the value of I_D obtained when the MOSFET is replaced with another unit having the same $k'_n W/L$ but $V_t = 1.5$ V.

Copyright © 2004 by Oxford University Press, Inc. Department of Electronic Systems

15

