

MOS Field-Effect Transistors (MOSFETs)

Lecture \# 4

MOSFET as an Amplifier

$v_{o}=v_{D S}=v_{D D}-R_{D} i_{D}$

Square law expression is non linear between I_{D} and V_{GS}.

Need to operate in appropriate region for linear behaviour.

MOSFET as an Amplifier

$$
\begin{array}{ll}
\\
\text { Copyright © } 2004 \text { by Oxford University Press, Inc. } \\
\text { Department of Electronic Systems }
\end{array}
$$

MOSFET as Switch

$v_{o}=v_{D D} \quad o f f$
$v_{o}=v_{\text {oc }}$
on

Dr. D. M. Akbar Hussain
Copyright © 2004 by Oxford University Press, Inc.
Department of Electronic Systems

Selection of Q Point

It is very important to note that the selection of Q point should be made in such a way that the signal is not distorted/clipped, we can see that if the Q point is near V_{DD} the output will be clipped off and if it is close to triode boundary signal will be distorted. So basically, the Q point should be lower than $V_{D D}$ and higher than $V_{D S Q}$ to have maximum swing.

However, one should note that selection of Q point is dependent on what you select the load resistor, which determines the transfer characteristics. Dr. D. M. Akbar Hussain
Copyright © 2004 by Oxford University Press, Inc. Department of Electronic Systems

Analysis: MOSFET as a Linear Amplifier

Cutoff Segment X - A , $v_{1} \leq v_{t} \quad v_{o}=V_{D D}$

Saturation Segment A-Q-B $v_{I} \geq v_{t} \quad v_{o} \geq v_{I}-V_{t}$
$i_{D}=\frac{1}{2} \mu_{n} c_{o x} \frac{W}{L}\left(v_{I}-V_{t}\right)^{2}$ and $v_{o}=V_{D D}-R_{D} i_{D}$ from these two equations
we get $v_{O}=v_{D D}-\frac{1}{2} R_{D} \mu_{n} c_{o x} \frac{W}{L}\left(v_{I}-V_{t}\right)^{2} \longleftarrow$
we can determine gain $\left.A_{v}=\left.\frac{d v_{o}}{d v_{I}}\right|_{v_{I}=V_{I Q}}=-R_{D} \mu_{n} c_{o x} \frac{W}{L}\left(V_{I Q}-V_{t}\right)\right)$
using the above two equation and substituting
$v_{I}=V_{I Q} \quad v_{o}=V_{O Q}$
$V_{I Q}-V_{t}=V_{O V}$
$A_{v}=\frac{2\left(V_{D D}-V_{O Q}\right)}{V_{O V}}=\frac{2 V_{R D}}{V_{O V}}$ where $\left(V_{R D}=V_{D D}-V_{O Q}\right)$
Triode Segment B-C $v_{I} \geq V_{t} \quad v_{o} \leq v_{I}-V_{t}$
$i_{D}=\mu_{n} c_{o x} \frac{W}{L}\left[\left(v_{I}-V_{t}\right) v_{O}-\frac{1}{2} v_{o}^{2}\right]$ and $v_{o}=V_{D D}-R_{D} i_{D}$ from these two equation
we get $v_{O}=V_{D D} /\left[1+R_{D} \mu_{n} c_{o x} \frac{W}{L}\left(v_{I}-V_{t}\right)\right]$ Reference 4.43 Equation
we know $r_{D S}=\frac{1}{\left[\mu_{n} c_{o x} \frac{W}{L}\left(v_{I}-V_{t}\right)\right]}$
$v_{O}=\frac{V_{D D}}{1+R_{D} \frac{1}{r_{D S}}}=V_{D D} \frac{r_{D S}}{r_{D S}+R_{D}}$ Usually $r_{D S} \ll R_{D}$
$v_{O} \cong V_{D D} \frac{r_{D S}}{R_{\mathrm{D}}}$
Copyright © 2004 by Oxford University Press, Inc. Department of Electronic Systems

Example 4.8

Point $\mathrm{X}: v_{I}=0 v \quad v_{O}=10 v \quad$ Point $\mathrm{A}: v_{I}=1 v \quad v_{O}=10 v$

Point B : $v_{I}=V_{I B}=V_{O B}+V_{t}=V_{O B}+1$
As we are in the saturation region so $v_{O}=V_{D D}-\frac{1}{2} R_{D} \mu_{n} c_{o x} \frac{W}{L}\left(v_{I}-V_{t}\right)^{2}$
we substitude above as $v_{O}=V_{O B}$ so $V_{O B}=10-\frac{1}{2} R_{D} \mu_{n} c_{o x} \frac{W}{L}\left(V_{O B}+1-1\right)^{2}$
$9 V_{O B}^{2}+V_{O B}-10=0$ It has two roots and possible one is $\mathrm{V}_{O B}=1 v$
Therefore $\mathrm{V}_{I B}=V_{O B}+V_{t}=1+1=2 v$

Point $\mathrm{C}: v_{O}=\frac{V_{D D}}{\left[1+R_{D} \mu_{n} c_{o x} \frac{W}{L}\left(v_{1}-V_{t}\right)\right]}$ Reference 4.43 Equation
$=10 / 1+18 \times 1 \times(10-1)=0.061$

Next is the biasing the amplifier, since the segment extends from 1 volt to 10 volt may be we select the Q point at 4 v .
so the current $I_{D}=\frac{V_{D D}-V_{O Q}}{R_{D}}=\frac{10-4}{18}=0.333 \mathrm{~mA}$
we can calculate over drive voltage $I_{D}=\frac{1}{2} k_{n}^{\prime} \frac{W}{L} V_{o v}^{2}$
$V_{O V}=\sqrt{\frac{2 \times 0.333}{1}}=0.816 \mathrm{~V}$
So we operate MOSFET at a dc gate to source voltage $=\mathrm{V}_{G S Q}=V_{t}+V_{O V}=1.816 \mathrm{v}$ Volatge gain from $4.40 A_{v}=-18 \times 1 \times(1.816-1)=-14.7 \mathrm{v} / \mathrm{v}$

Dr. D. M. Akbar Hussain

Example 4.8

Superimpose the following signal at 1.816 v (Q point)

$i_{D}=\frac{1}{2} \mu_{n} C_{o x} \frac{W}{L}\left(v_{G S}-v_{t}\right)^{2}$
So at $v_{G S}=1.741 \mathrm{v}, i_{D}=\frac{1}{2} \times 1 \times(1.741-1)^{2}=0.275 \mathrm{~mA}$
At $v_{G S}=1.816 \mathrm{v}, i_{D}=\frac{1}{2} \times 1 \times(1.816-1)^{2}=0.333 \mathrm{~mA}$
At $v_{G S}=1.891 \mathrm{v}, i_{D}=\frac{1}{2} \times 1 \times(1.891-1)^{2}=0.397 \mathrm{~mA}$
(a)

Look at the +ve \& -ve increment in the drain current, are they same ?

Example 4.8

The output will vary around bias value of $V_{\mathrm{OQ}}=4 \mathrm{~V}$

At $v_{G S}=1.741 \mathrm{v}, i_{D}=0.275 \mathrm{~mA}$ and $v_{o}=v_{D D}-i_{D} R_{D}=10-0.275 \times 18=5.05 \mathrm{v}$ At $v_{G S}=1.891 \mathrm{v}, i_{D}=0.397 m A$ and $v_{o}=v_{D D}-i_{D} R_{D}=10-0.397 \times 18=2.85 v$

(b)

Look at the output for +ve and -ve excursions ?

Exercise 4.17 \& 4.18

4.17 For the circuit studied in Example 4.8 above and with reference to the transfer characteristic sketched in Fig. 4.26(c): (a) Give the values of $V_{I Q}, V_{I B}, V_{O Q}$, and $V_{O B}$. (b) Use the values in (a) to determine the largest allowable value of the negative peak of the output signal and the magnitude of the corresponding positive peak of the input signal. Disregard distortion caused by the square-law MOSFET characteristic. (c) Repeat (b) for the positive-output peak and the corresponding negative-input peak. (d) From the results of (b) and (c), what is the maximum amplitude of a sine wave that can be applied at the input and the corresponding output amplitude. What value of gain do these amplitudes imply? Why is it different from the $14.7 \mathrm{~V} / \mathrm{V}$ found in Example 4.8?
Ans. (a) $1.816 \mathrm{~V}, 2 \mathrm{~V}, 4 \mathrm{~V}, 1 \mathrm{~V}$; (b) $3 \mathrm{~V}, 0.184 \mathrm{~V}$; (c) $6 \mathrm{~V}, 0.816 \mathrm{~V}$; (d) $0.184 \mathrm{~V}, 3 \mathrm{~V}, 16.3 \mathrm{~V} / \mathrm{V}$, because of the nonlinear transfer characteristic.
4.18 Derive the voltage-gain expression in Eq. (4.41). Use the expression to verify the gain value found in Example 4.8.

$$
A_{v}=\frac{2 V_{R D}}{V_{O V}}<\begin{aligned}
& V_{O}=V_{D D}-R_{D} I_{D} \quad\left\{v_{I}=V_{I Q}, V_{O}=V_{O Q}, V_{O V}=V_{I Q}-V_{t}\right\} \\
& I_{D}=\frac{1}{2} K_{n}^{\prime} \frac{W}{L}\left(v_{I}-V_{t}\right)^{2} \\
& \text { Dr. D. M. Alkbar Hussain }
\end{aligned}
$$

Copyright © 2004 by Oxford University Press, Inc.
Department of Electronic Systems

Biasing IMOS Amplifier Circuits

Not a good idea for biasing MOSFET ?

$$
I_{D}=\frac{1}{2} \mu_{n} C_{o x} \frac{W}{L}\left(V_{G S}-V_{t}\right)^{2}
$$

The use of fixed bias (constant $V_{G S}$) can result in a large variability in the value of I_{D}. Devices 1 and 2 represent extremes among units of the same type.

Biasing with fixed gate voltage $\boldsymbol{V}_{\boldsymbol{G}} \&$ having a source resistor \boldsymbol{R}_{S}

$$
V_{G}=V_{G S}+R_{S} I_{D}
$$

(a)
(a) Basic Arrangement
(b) Reduced variability in I_{D}

Biasing with fixed gate voltage $\boldsymbol{V}_{\boldsymbol{G}} \&$ having a source

 resistor \boldsymbol{R}_{S}

(d)

(e)
(c) Practical implementation using a single supply; (d) Coupling of a signal source to the gate using a capacitor $C_{C 1}$; (e) Practical implementation using two supplies.

Example 4.9

It is required to design the circuit of Fig. 4.30(c) to establish a dc drain current $I_{D}=0.5 \mathrm{~mA}$. The MOSFET is specified to have $V_{t}=1 \mathrm{~V}$ and $k_{n}^{\prime} W / L=1 \mathrm{~mA} / \mathrm{V}^{2}$. For simplicity, neglect the channel-length modulation effect (i.e., assume $\lambda=0$). Use a power-supply $V_{D D}=15 \mathrm{~V}$. Calculate the percentage change in the value of I_{D} obtained when the MOSFET is replaced with another unit having the same $k_{n}^{\prime} W / L$ but $V_{t}=1.5 \mathrm{~V}$.

As a rule of thumb for classical biasing we select R_{D} and R_{S} in such a way that the $V_{D D}$ voltage is divided equally across R_{D}, MOSFET (Drain to Source) \& R_{S}, which means one third across these three components.

Dr. D. M. Alkbar Hussain
Copyright © 2004 by Oxford University Press, Inc.
Department of Electronic Systems

Exercise 4.19 \& 4.20

Dr. D. M. Akbar Hussain
(e)
partment of Electronic Systems

Biasing: Drain-to-Gate Feedback Resistor

$$
\begin{aligned}
& V_{G S}=V_{D S}=V_{D D}-R_{D} I_{D} \\
& V_{D D}=V_{G S}+R_{D} I_{D}
\end{aligned}
$$

Biasing Using a Constant Current Source

(a)

(b)

To source of
transistor Q
in Fig. 4.33 (a)

$$
\begin{aligned}
& I_{D 1}=\frac{1}{2} \mu_{n} C_{o x}\left(\frac{W}{L}\right)_{1}\left(v_{G S}-v_{t}\right)^{2} \\
& I_{D 1}=I_{R E F}=\frac{v_{D D}+v_{S S}-v_{G S}}{R} \\
& I=I_{D 2}=\frac{1}{2} \mu_{n} C_{o x}\left(\frac{W}{L}\right)_{2}\left(v_{G S}-v_{t}\right)^{2}
\end{aligned}
$$

$$
I=I_{R E F} \frac{\left(\frac{W}{L}\right)_{2}}{\left(\frac{W}{L}\right)_{1}}
$$

Exercise 4.21 \& 4.22

D4.21 It is required to design the circuit in Fig. 4.32 to operate at a de drain current of 0.5 mA . Assume $V_{D D}$ $+5 \mathrm{~V}, k_{n}^{\prime} W / L=1 \mathrm{~mA} / \mathrm{V}^{2}, V_{1}=1 \mathrm{~V}$, and $\lambda=0$. Use a standard 5% resistance value for R_{D}, and give the actual values obtained for I_{D} and V_{D}
Ans. $R_{D}=6.2 \mathrm{k} \Omega ; I_{D} \equiv 0.49 \mathrm{~mA} ; V_{D} \equiv 1.96 \mathrm{~V}$
First find $V_{O V}$ and then $V_{G S}$, for this configuration $V_{G S}=V_{D S}$, find R_{D}.
Now calculate new I_{D} by substituting $V_{G S}=V_{D}=V_{D D}-R_{D} I_{D}$

D4.22 Using two transistors Q_{1} and Q_{2} having equal lengths but widths related by $W_{2} / W_{1}=5$, design the circuit of Fig. 4.33(b) to obtain $I=0.5 \mathrm{~mA}$. Let $V_{D D}=-V_{S S}=5 \mathrm{~V}, k_{n}^{\prime}(W / L)_{1}=0.8 \mathrm{~mA} / \mathrm{V}^{2}, V_{1}=1 \mathrm{~V}$, and $\lambda=0$. Find the required value for R. What is the voltage at the gates of Q_{1} and Q_{2} ? What is the lowest voltage allowed at the drain of Q_{2} while Q_{2} remains in the saturation region?
Ans. $85 \mathrm{k} \Omega ;-3.5 \mathrm{~V} ;-4.5 \mathrm{~V}$

(a)

(b)

Dr. D. M. Alkbar Hussain
Copyright © 2004 by Oxford University Press, Inc.
Department of Electronic Systems

