

Example 5.2

Consider a common-emitter circuit using a BJT having $I_s = 10^{-15}$ A, a collector resistance $R_c = 6.8 \text{ k}\Omega$, and a power supply $V_{cc} = 10$ V.

(a) Determine the value of the bias voltage V_{BE} required to operate the transistor at $V_{CE} = 3.2$ V. What is the corresponding value of I_C ?

(b) Find the voltage gain A_v at this bias point. If an input sine-wave signal of 5-mV peak amplitude is superimposed on V_{BE} , find the amplitude of the output sine-wave signal (assume linear operation).

(c) Find the positive increment in v_{BE} (above V_{BE}) that drives the transistor to the edge of saturation, where $v_{CE} = 0.3$ V.

(d) Find the negative increment in v_{BE} that drives the transistor to within 1% of cutoff (i.e., to $v_{O} = 0.99V_{CC}$).

Exercise 5.20

5.20 Consider the circuit of Fig. 5.27 with $V_{BB} = 1.7 \text{ V}$, $R_B = 100 \text{ k}\Omega$, $V_{CC} = 10 \text{ V}$, and $R_C = 5 \text{ k}\Omega$. Let the transistor $\beta = 100$. The input signal v_i is a triangular wave of 0.4 V peak-to-peak. Refer to Fig. 5.30, and use the geometry of the graphical construction shown there to answer the following questions: (a) If $V_{BE} = 0.7 \text{ V}$, find I_B . (b) Assuming operation on a straight line segment of the exponential $i_{B'}$ - v_{BE} curve, show that the inverse of its slope is V_T/I_B , and compute its value. (c) Find approximate values for the peak-to-peak amplitude of i_b and of v_{be} . (d) Assuming the i_C - v_{CE} curves to be horizontal (i.e., ignoring the Early effect), find I_C and $V_{CE'}$. (e) Find the peak-to-peak amplitude of i_c and of $v_{ce'}$. (f) What is the voltage gain of this amplifier?

Ans, (a) 10 μ A; (b) 2.5 k Ω ; (c) 4 μ A, 10 mV; (d) 1 mA, 5 V; (e) 0.4 mA, 2 V; (f) -5 V/V

Example 5.4

Exercise 5.40

ESBJERG

53

Ans. (a) -0.1 V, -0.8 V, +2 V; (b) 40 mA/V, 2.5 k Ω , 100 k Ω ; (c) -77 V/V, +3.9%

