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Large Signal Equivalent ModelLarge Signal Equivalent Model
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Operation in Saturation ModeOperation in Saturation Mode

VVvVVVv

VVvVVVv

BCBConnBCBC

BEBEonBEonBE

6.05.0 Typically,  4.0;

8.07.0 Typically,  5.0;

0 



VVvVVVv

VVvVVVv

CBCBonnCBCB

EBEBonEBonEB

6.05.0 Typically,  4.0;

8.07.0 Typically,  5.0;

0 



Copyright  2004 by Oxford University Press, Inc.
5

VVVv CEsatCE 2.01.0  VVVv CEsatCE 2.01.0 

Fforced

BforcedCsat II









Beta forced means that the transistor is operating in saturated mode. The ratio of Beta forward and the forced beta is called overdrive
factor, the more transistor goes into saturation the voltage VCE will also be lower.

Transfer Characteristics of CE AmplifierTransfer Characteristics of CE Amplifier
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(a) Basic common-emitter amplifier circuit. (b) Transfer characteristic of the circuit in (a). The amplifier is biased at a point Q, and a small voltage 
signal  vi is superimposed on the dc bias voltage VBE. The resulting output signal vo appears superimposed on the dc collector voltage VCE. The 
amplitude of vo is larger than that of vi by the voltage gain Av.
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Example 5.2Example 5.2
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Exercise 5.19Exercise 5.19
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Graphical AnalysisGraphical Analysis

CCCCCE RiVv 

Copyright  2004 by Oxford University Press, Inc.
9

. & between  iprelationsh lineae a shows   this
1

CCECE
CC

CC
C ivv

RR

V
i 

This linear relationship can be represented by a straight line.

Graphical AnalysisGraphical Analysis

BBBBBE RiVv 
CCCCCE RiVv 

Copyright  2004 by Oxford University Press, Inc.
10

BBBEBB RivV 
CE

CC

CC
C

CCCCC

v
RR

V
i

1




6

Bias Point LocationBias Point Location
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Graphical determination of the signal components vbe, ib, ic, and vce when a signal component vi is superimposed on the dc voltage VBB (see Fig. above).

Bias Point LocationBias Point Location
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Effect of  bias-point location on allowable signal swing: Load-line A results in bias point QA with a corresponding VCE which is too close to VCC and 
thus limits the positive swing of vCE. At the other extreme, load-line B results in an operating point too close to the saturation region, thus limiting 
the negative swing of vCE.
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Exercise 5.20Exercise 5.20
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To use it as switch we utilize the cutoff and saturation modes of operations. A simple circuit used to illustrate the 
different modes of operations of the BJT.
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Example 5.3Example 5.3
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BI

IC(sat) = 9.8 mA
IB(EOS) = 0.196 mA
IB = 1.96 mA
RB = 2.2 K

Exercise 5.21Exercise 5.21
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Example 5.4Example 5.4
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Example 5.5Example 5.5
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Example 5.6Example 5.6
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Exercises 5.22, 5.23 & 5.24Exercises 5.22, 5.23 & 5.24
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Example 5.7Example 5.7
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Example 5.8Example 5.8
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Example 5.9Example 5.9
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Example 5.10Example 5.10
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Exercise 5.28Exercise 5.28
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Example 5.11Example 5.11
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Exercises 5.29 & 5.30Exercises 5.29 & 5.30
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Example 5.12Example 5.12
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Exercise 5.31Exercise 5.31
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Biasing BJT Amplifier CircuitsBiasing BJT Amplifier Circuits
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Two obvious schemes for biasing the BJT: (a) by fixing VBE; (b) by fixing IB. Both result in wide variations in IC and hence in VCE and therefore are 
considered to be “bad.” Neither scheme is recommended.
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Biasing BJT Amplifier CircuitsBiasing BJT Amplifier Circuits
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Classical biasing for BJTs using a single power supply: (a) circuit; (b) circuit with the voltage divider
supplying the base replaced with its Thévenin equivalent. The small changes in the VBE are swept away
by large value of VBB. Also
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Exercise 5.32Exercise 5.32
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Biasing BJT Amplifier Circuit with 2 PSBiasing BJT Amplifier Circuit with 2 PS
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Biasing the BJT using two power supplies. Resistor RB is needed only if the signal is to be capacitively coupled to the base. Otherwise, the base can be 
connected directly to ground, or to a grounded signal source, resulting in almost total -independence of the bias current.
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Exercise 5.33Exercise 5.33
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Biasing BJT Amplifier Circuit with Feedback Biasing BJT Amplifier Circuit with Feedback 
ResistorResistor

Copyright  2004 by Oxford University Press, Inc.
38

(a) A common-emitter transistor amplifier biased by a feedback resistor RB. (b) Analysis of the circuit in (a).
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Exercise 5.34Exercise 5.34
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Biasing using Constant Current SourceBiasing using Constant Current Source
This has advantage that emitter current is independent of beta and base resistance, so base resistance can be made large to have
high input resistance with out affecting the bias stability. It is more simplified design.
The circuit in (b) utilizes a matched transistors Q1 and Q2 (Q1 is connected as a diode), both transistors have high beta values, if
we neglect both base current the current through Q1 is:

As both transistors have same VBE so their collector current will be equal; I = IREF.

By keeping V greater than ( V + V ) we can guarantee that Q2 remains in active region and the current remains constant
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By keeping V greater than (-VEE + VBE), we can guarantee that Q2 remains in active region and the current remains constant.
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(a) A BJT biased using a constant-current source I. (b) Circuit for implementing the current source I.
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Exercise 5.35Exercise 5.35
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Small Signal OperationSmall Signal Operation
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Collector Current & Transconductance
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(a) Conceptual circuit to illustrate the operation of the transistor as an amplifier. (b) The circuit of (a) with the signal source vbe eliminated for dc (bias) 
analysis.
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TransconductanceTransconductance
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Linear operation of the transistor under the small-signal condition: A small signal vbe with a triangular waveform is superimposed on the dc voltage VBE. It 
gives rise to a collector signal current ic, also of triangular waveform, superimposed on the dc current IC. Here, ic = gmvbe, where gm is the slope of the iC–
vBE curve at the bias point Q.

Base, Emitter current and GainBase, Emitter current and Gain
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Exercise 5.37 & 5.38Exercise 5.37 & 5.38
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HybridHybrid--ππ ModelModel

The most widely used model.
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Two slightly different versions of the simplified hybrid- model for the small-signal operation of the BJT. The equivalent circuit in (a) represents 
the BJT as a voltage-controlled current source (a transconductance amplifier), and that in (b) represents the BJT as a current-controlled current 
source (a current amplifier).
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The T ModelThe T Model
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Two slightly different versions of what is known as the T model of the BJT. The circuit in (a) is a voltage-controlled current source representation and 
that in (b) is a current-controlled current source representation. These models explicitly show the emitter resistance re rather than the base resistance r
featured in the hybrid- model.

Example 5.14Example 5.14
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(a) circuit; (b) dc analysis; (c) small-signal model.
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Example 5.15Example 5.15
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Example 5.16Example 5.16
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(a) circuit; (b) dc analysis; (c) small-signal model; (d) small-signal analysis performed directly on the circuit.
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Example 5.16Example 5.16

Distortion in output signal due to transistor cutoff. Note that it is assumed that no distortion due to the transistor nonlinear characteristics is occurring.
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Input and output waveforms for the circuit of Fig. 5.55. Observe that this amplifier is non-inverting, a property of the common-base configuration.

Small Signal Model to Account for Early EffectSmall Signal Model to Account for Early Effect

We have seen that the collector current not only depend on vBE but also on vCE, so the dependence on vCE can be modelled by
assigning a finite output resistance to the controlled current source in the hybrid pi model.
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The hybrid- small-signal model, in its two versions, with the resistance ro included.

)||( oCbemo rRvgv 



27

Exercise 5.40Exercise 5.40
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