
Dr. D.M. Akbar Hussain

Compiler Construction F6S 1

Dr. D. M. Akbar Hussain

Department of Electronic Systems 1

• Parser verifies that a program is syntactically correct and

Semantic AnalyserSemantic Analyser

• Parser verifies that a program is syntactically correct and
constructs a syntax tree (or other intermediate
representation).

• Semantic analyzer checks that the program satisfies all
other static language requirements that is if the structure
verified by the parser makes any sense:

Dr. D. M. Akbar Hussain

Department of Electronic Systems 2

1.1. IsIs meaningfulmeaningful..

2.2. AlsoAlso itit collectscollects andand computescomputes informationinformation..



Dr. D.M. Akbar Hussain

Compiler Construction F6S 2

Ch ki  f  “ t i ”

Semantic AnalyserSemantic Analyser

Checking for “correct meaning”
Warn about dubious meaning

Long-distance and deep relations
Lexer and parser are only short-distance

Implementation could be using AST traversal

Dr. D. M. Akbar Hussain

Department of Electronic Systems 3

1.1. DataData typetype ofof aa variablevariable..

AttributesAttributes

2.2. ValueValue ofof anan expressionexpression..

3.3. LocationLocation ofof aa variablevariable inin memorymemory..

4.4. ObjectObject codecode ofof aa function/procedurefunction/procedure..

55 NumberNumber ofof significantsignificant digitsdigits inin aa numbernumber

Dr. D. M. Akbar Hussain

Department of Electronic Systems 4

5.5. NumberNumber ofof significantsignificant digitsdigits inin aa numbernumber..



Dr. D.M. Akbar Hussain

Compiler Construction F6S 3

Attribute Attribute Grammar/EquationGrammar/Equation

Xi .aj = fij (X0 .a1 , X0 .a2 , .... X0 .ak ,X1 .a1 ..... Xn .a1 ..Xn .ak )

Different instances of the same non-terminal must be
subscripted to be distinguished.

Dr. D. M. Akbar Hussain

Department of Electronic Systems 5

Syntax Directed SemanticsSyntax Directed Semantics

Attribute grammar are most useful for languages that obey
the syntaxsyntax directeddirected semantics,semantics, which fortunately most
languages do, but the designers have to write the attribute
grammars by hand there is no standard way or tool
available for this.

Dr. D. M. Akbar Hussain

Department of Electronic Systems 6



Dr. D.M. Akbar Hussain

Compiler Construction F6S 4

Grammar:
exp → exp + term | exp - term | term
term → term * factor | factor
factor → ( exp ) | number

Semantic RulesSemantic Rules

factor → ( exp ) | number

GRAMMAR RULE SEMANTIC RULES

exp1 →exp 2 + term exp1 .val  =  exp2 .val+ term.val
exp1 →exp 2 - term exp1 .val  =  exp2 .val− term.val
exp→ term exp.val  =  term . val
term1→ term2* factor term1.val  =  term2 .val∗factor. val

Dr. D. M. Akbar Hussain

Department of Electronic Systems 7

1 2 f 1 2 f
term→ factor term . val  =  factor.val
factor →( exp) factor .val = exp. val
factor →number factor . val = number. val

Grammar Rules for decimal & octal numbersGrammar Rules for decimal & octal numbers

based-num  → num  basechar
basechar → o | d
num → num digit | digit
digit → 0 | 1 | 2 | 3 … | 9

Dr. D. M. Akbar Hussain

Department of Electronic Systems 8



Dr. D.M. Akbar Hussain

Compiler Construction F6S 5

Grammar Rules Semantic Rules

based-num → num base-char based-num.val = num.val
num.base = base-char.base

base-char → o base-char.base = o

base-char → d base-char.base = d

Attribute Grammar for decimal & octal numbersAttribute Grammar for decimal & octal numbers

num1 → num2 digit num1.val =
if digit.val = error or num2.val = error then error
else num2.val * num1.base + digit.val

num2.base = num1.base
digit.base = num1.base

num → digit num.val = digit.val
digit.base = num.base

digit → 0 digit.val = 0

digit → 1 digit.val = 0

digit → 2 digit.val = 0

based-num  → num  basechar
basechar → o | d

num → num digit | digit

digit → 0 | 1 | 2 | 3 … | 9

Dr. D. M. Akbar Hussain

Department of Electronic Systems 9

……………….. …………………………….

digit → 7 digit.val = 0

digit → 8 digit.val = 
if digit.base = 8 then error  else 8

digit → 9 digit.val = 
if digit.base = 8 then error else 9

Example: Example: 345 345 oo

Dr. D. M. Akbar Hussain

Department of Electronic Systems 10



Dr. D.M. Akbar Hussain

Compiler Construction F6S 6

Xi .aj = fij (X0 .a1 , X0 .a2 , .... X0 .ak ,X1 .a1 ..... Xn .a1 ..Xn .ak ) 

Algorithms for Attribute ComputationAlgorithms for Attribute Computation

i j ij ( 0 1 , 0 2 , 0 k , 1 1 n 1 n k )

DependencyDependency GraphsGraphs

•• DependencyDependency graphgraph indicatesindicates orderorder inin whichwhich attributesattributes mustmust bebe computedcomputed..

EvaluationEvaluation OrderOrder

Dr. D. M. Akbar Hussain

Department of Electronic Systems 11

Constructing Dependency GraphsConstructing Dependency Graphs

1.1. Parse Tree MethodParse Tree Method

2.2. Rule Based MethodRule Based Method

3.3. Oblivious MethodOblivious Method

Dr. D. M. Akbar Hussain

Department of Electronic Systems 12



Dr. D.M. Akbar Hussain

Compiler Construction F6S 7

Constructing Dependency GraphsConstructing Dependency Graphs

Parse tree method. At compile time, this method obtain an evaluation order
from a topological sort of the dependency graph constructed from the parse tree
for each input. This method will fail to find an evaluation order only if the
dependency graph for the particular parse tree under construction has a cycle.

Rule based method. At compiler construction time, the semantic rules
associated with productions are analyzed, either by hand, or by specialized tool.
For each production, the order in which the attributes associated with that
production are evaluated is predetermined at compiler construction time.

Oblivious method. An evaluation order is chosen without considering the
ti l F l if t l ti t k l d i i th th

Dr. D. M. Akbar Hussain

Department of Electronic Systems 13

semantic rules. For example, if translation takes place during parsing, then the
order of evaluation is forced by the parsing method, independent of the
semantic rules. An oblivious evaluation order restricts the class of syntax
directed definitions that can be implemented.

declaration  → data-type  variable-list
data-type → int | float
variable-list → id , variable-list | id

Attribute Grammar from Grammar RulesAttribute Grammar from Grammar Rules

Grammar Rules Semantic Rules

declaration → data-type variable-list variable-list.dtype = type.dtype

data-type → int type.dtype = integer

data-type → float type.dtype = real

variable-list1 → id ,  variable-list2 id.dtype = variable-list1.dtype

Dr. D. M. Akbar Hussain

Department of Electronic Systems 14

variable-list2.dtype = variable-list1.dtype

variable-list → id id.dtype = variable-list.dtype



Dr. D.M. Akbar Hussain

Compiler Construction F6S 8

declaration  → data-type  variable-list
data-type → int | float
variable-list → id , variable-list | id

Parse TreeParse Tree

float x, y
declaration

data-type variable-list
dtype = realdtype = real

Dr. D. M. Akbar Hussain

Department of Electronic Systems 15

id
x

idy
dtype = real dtype = real

,float

Dependency GraphDependency Graph

Dr. D. M. Akbar Hussain

Department of Electronic Systems 16



Dr. D.M. Akbar Hussain

Compiler Construction F6S 9

Dependency GraphDependency Graph

Dr. D. M. Akbar Hussain

Department of Electronic Systems 17

Dependency GraphDependency Graph

Dr. D. M. Akbar Hussain

Department of Electronic Systems 18



Dr. D.M. Akbar Hussain

Compiler Construction F6S 10

Dependency GraphDependency Graph

Dr. D. M. Akbar Hussain

Department of Electronic Systems 19

Dependency GraphDependency Graph

Dr. D. M. Akbar Hussain

Department of Electronic Systems 20



Dr. D.M. Akbar Hussain

Compiler Construction F6S 11

DiagraphDiagraph

E
D

C

E
D

C

A digraph is a graph whose edges are all directed .  Short for “directed 
graph”.

Applications:

A
B

C

A
B

C

Dr. D. M. Akbar Hussain

Department of Electronic Systems 21

Applications:

•One-way streets.

•Flights.

•Task scheduling.

DAG: Directed Acyclic GraphDAG: Directed Acyclic GraphDAG: Directed Acyclic GraphDAG: Directed Acyclic Graph

A directed acyclic graph (DAG) is a digraphdigraph that has no directed cycles.

A Topological Sort  finds a path from u to v  (if the path exist) in such a A Topological Sort  finds a path from u to v  (if the path exist) in such a 
way  that u always appear before v.way  that u always appear before v.

Dr. D. M. Akbar Hussain

Department of Electronic Systems 22



Dr. D.M. Akbar Hussain

Compiler Construction F6S 12

Scheduling ExampleScheduling Example

Status Register Bit 2 = 1 Go to Factorial Routine

Task 2Task 1

Task 4 Task 3

Task 9

Task 8

Dr. D. M. Akbar Hussain

Department of Electronic Systems 23

Task 6

Task 7

Task 10

Topological OrderingTopological Ordering

A topological ordering of a digraph is a numbering v1 , …, vn of 
the vertices such that for every edge (vi , vj), we have i < j .

Dr. D. M. Akbar Hussain

Department of Electronic Systems 24



Dr. D.M. Akbar Hussain

Compiler Construction F6S 13

ED

Diagraph & Topological OrderingDiagraph & Topological Ordering

ED
V4 V5

ED

A

B

C

ED

A

B

C
V1

V2

V3

Dr. D. M. Akbar Hussain

Department of Electronic Systems 25

Topological SortingTopological Sorting

Wakeup Breakfast

SleepStudy 
Compiler

SMS 
(Send/Receive) Work-Out

Dream 
about ……

Dr. D. M. Akbar Hussain

Department of Electronic Systems 26

Assignment 
Solution Eat/Coffee/

Soda



Dr. D.M. Akbar Hussain

Compiler Construction F6S 14

ExampleExample

B A

C

E

D

F

G

Dr. D. M. Akbar Hussain

Department of Electronic Systems 27

H

I

Topological Sort ExampleTopological Sort Example

A

BB
D

C

Dr. D. M. Akbar Hussain

Department of Electronic Systems 28

A B D C E F,  A B D C F E  and A B C E F D …….. are valid topological 
sorted orders. 

E F



Dr. D.M. Akbar Hussain

Compiler Construction F6S 15

Topological Sort ExampleTopological Sort Example

A

FF
B

C
D

E G

Dr. D. M. Akbar Hussain

Department of Electronic Systems 29

Topological sort is not unique. 
In this graph, A B C F D E G, A B F C E D G and A B C F E D G are valid 
topological sorted orders. 

Topological Sort ExerciseTopological Sort Exercise

B

D

G

C IA

E H

Dr. D. M. Akbar Hussain

Department of Electronic Systems 30

Determine Topological Order for this graph.

F



Dr. D.M. Akbar Hussain

Compiler Construction F6S 16

Topological Sort ExerciseTopological Sort Exercise

C E

A

B D

C

G

E

H

Dr. D. M. Akbar Hussain

Department of Electronic Systems 31

A
F

Topological SortTopological Sort

Dr. D. M. Akbar Hussain

Department of Electronic Systems 32



Dr. D.M. Akbar Hussain

Compiler Construction F6S 17

Topological SortTopological Sort

Dr. D. M. Akbar Hussain

Department of Electronic Systems 33

SynthesizedSynthesized attributesattributes::

Type of  AttributesType of  Attributes

Synthesized attributes always flow from children to parents, and can
always be computed by a post-order traversal.

An attribute grammar in which all attributes are synthesized is called S-attributed
definition.

An other class of SDD is called L-attributed definition, in which the dependency
graph edges (evaluation order) goes from left to right only. Which some time
necessary to use.

Dr. D. M. Akbar Hussain

Department of Electronic Systems 34

InheritedInherited attributesattributes::

Inherited attributes can flow any other way.



Dr. D.M. Akbar Hussain

Compiler Construction F6S 18

a A A

Different Dependency RelationshipDifferent Dependency Relationship

(b) Inheritance from sibling to sibling
via the parent

(a) Inheritance from parent to siblings

a a CB a a CB

A

Dr. D. M. Akbar Hussain

Department of Electronic Systems 35

(c) Sibling inheritance via sibling pointers

a a CB

Structure of Symbol TableStructure of Symbol Table

Symbol TableSymbol Table

Link List, Hash Table etc.Link List, Hash Table etc.

Hash Function. (watch out for collisions)

1. Open Addressing. (Inserting new items in 
successive bucket)

2. Separate Chaining.(Each bucket is a list so when 
collision occurs new item is added to the list)

Declaration

Dr. D. M. Akbar Hussain

Department of Electronic Systems 36

Declaration.

Scope Rules and Block Structure.

Example of Symbol Table.



Dr. D.M. Akbar Hussain

Compiler Construction F6S 19

Hash TableHash Table

List of items

i

BucketsIndices

0

size

j

..

n

1

2

3

4

H h t bl i f t i ll d b k t i d d b i t A

Dr. D. M. Akbar Hussain

Department of Electronic Systems 37

Hash table is an array of entries, called buckets indexed by an integer range, A
hash function compute the search key (identifier name) into an integer hash
value (indices), and the corresponding info is stored in the bucket.

1. The part of the program in which the identifier is accessible or visible.

Scope of  an IdentifierScope of  an Identifier

2. An identifier may have restricted scope.

3. Same identifier may refer to different things in different parts of the 
program.

4. Different scopes for same name don’t overlap.

Dr. D. M. Akbar Hussain

Department of Electronic Systems 38

5. Not all kinds of identifiers follow the most-closely nested rule



Dr. D.M. Akbar Hussain

Compiler Construction F6S 20

class Foo {
int value = 39;
test() {
int b = 12;
b = value + b;

}

scope of b

ScopeScope

}
setValue(int c) {
value = c;
int d = c; {

c = c + d;
value = c;

}
}

}

scope of value

scope of c

scope of d

Dr. D. M. Akbar Hussain

Department of Electronic Systems 39

}
public class Bar {

int newvalue = 42;
setValue(int c){

newvalue = c;
}

}

scope of c scope of newvalue

class foo {
int a = 39;
test();

Symbol TableSymbol Table

Symbol Kind Type

foo class int

a var int

int b = a + 3;
}

Dr. D. M. Akbar Hussain

Department of Electronic Systems 40

test method int

b var int



Dr. D.M. Akbar Hussain

Compiler Construction F6S 21

Symbol Table LookupSymbol Table Lookup

Symbol Kind Type

foo method int 

a var int

t t th d i t

Symbol Kind Type

test method int

Symbol Kind Type

a var int

(test)

test method int

b var int

Dr. D. M. Akbar Hussain

Department of Electronic Systems 41

Symbol Kind Type

b var int

Lookup (b)

int foo () {
int a = 39;
test();
int b = a + 3;

}

Symbol Kind Type

setValue method int

c var int 

Symbol Table LookupSymbol Table Lookup

test method int

value var int

d var int 

Symbol Kind Type

b var int

Symbol Kind Type

d var int

(test) (setValue)

setValue(int c)

Dr. D. M. Akbar Hussain

Department of Electronic Systems 42

Symbol Kind Type

c var int

(setValue-block)

Lookup (value)

setValue(int c)
{
test ();
int value = c;
int d = c;
{
c = c + d;
value = c;

}
}



Dr. D.M. Akbar Hussain

Compiler Construction F6S 22

Symbol Kind Type

setValue method int

c var int 

ERROR !

Symbol Table LookupSymbol Table Lookup

test method int

value var int 

d var int 

Symbol Kind Type

b var int

Symbol Kind Type

d var int

(test) (setValue)

setValue(int c)

Dr. D. M. Akbar Hussain

Department of Electronic Systems 43

Symbol Kind Type

c var int

(setValue-block)

Lookup (myValue)

setValue(int c)
{
test ();
int value = c;
int d = c;
{
c = c + d;
myValue = c;

}
}

class Foofoo {

int test() {
int b = 3;
b b + 3

Class

Root

name=Foofoo

Symbol Table ConstructionSymbol Table Construction

b = b + 3;
}
int TestValue(){
int c = 10 + 4;
int d = 8; {

c = c + d;
d = d + c;
c = d + 10;

}

Method Method
name=TestValuename=test

Dr. D. M. Akbar Hussain

Department of Electronic Systems 44

}
}

}

Expr

id=b

Expr Expr ExprExpr

id=did=c



Dr. D.M. Akbar Hussain

Compiler Construction F6S 23

class

Class

Root

name=Foofoo

Symbol kind

Globals

Symbol kind

Foofoo

Foofoo

t t th d

Symbol Table ConstructionSymbol Table Construction via ASTvia AST

Method Method
name=TestValuename=test

Symbol

test
Symbol

TestValue

test method
TestValue method

b var c var

S b l

Dr. D. M. Akbar Hussain

Department of Electronic Systems 45

Expr

id=b

Expr ExprExpr

Symbol

d var
id=d

Expr

id=c

class

Class

Root

name=Foo

Symbol kind

Globals

Symbol kind

Foofoo

Foofoo

t t th d

Symbol Table Construction via ASTSymbol Table Construction via AST

Method Method
name=TestValuename=test

Symbol

test
Symbol

TestValue

test method
TestValue method

b var c var

Dr. D. M. Akbar Hussain

Department of Electronic Systems 46

Expr

id=b id=c

Expr ExprExpr

Symbol

d var
id=d

Expr



Dr. D.M. Akbar Hussain

Compiler Construction F6S 24

class A { 

foo() {

bar();

}
Program

Root
class

Symbol kind

globals

A

A

Symbol Table Construction via ASTSymbol Table Construction via AST

}
Program

Class
id=A

Method

id=foo

Symbol kind

foo method

Dr. D. M. Akbar Hussain

Department of Electronic Systems 47

dispatch

id=bar()

Undefined
identifier bar()

class A { 

foo() {

bar();

}
Program

Root
class

Symbol kind

globals

A

A

Symbol Table ConstructionSymbol Table Construction

bar() {

…

}

}

Program

Class
id=A

Method

id=foo

Method

id=bar

Symbol kind FREF

foo method
bar method true

Dr. D. M. Akbar Hussain

Department of Electronic Systems 48

d ba

Dispatch

id=bar()



Dr. D.M. Akbar Hussain

Compiler Construction F6S 25

1: { Simple Program

2: in Tiny Language –

3: computing factorial 

TINY Symbol TableTINY Symbol Table

4: }

5: read x; { Input an Integer }

6: if 0 < x then { don’t compute if x <= 0 }

7: fact := 1;

8: repeat

9: fact := fact * x;

10    1

Dr. D. M. Akbar Hussain

Department of Electronic Systems 49

10: x := x – 1;

11: until x = 0;

12: write fact { output factorial of x }

13: end

TINY Symbol TableTINY Symbol Table

Variable Name Location Line Numbers

x 0 5     6     9    10    10    11

fact 1 7     9     9    12

Dr. D. M. Akbar Hussain

Department of Electronic Systems 50



Dr. D.M. Akbar Hussain

Compiler Construction F6S 26

YaccYacc Example (Synthesized Attribute)Example (Synthesized Attribute)

Parsing 
Stack

Input Parsing 
Action

Value 
Stack

Semantic Action

1 $ 3 * 4 + 5 $ Shift $
2 $ n * 4 + 5 $ Reduce $ n E.val = n.val
3 $ E * 4 + 5 $ Shift $ 3
4 $ E * 4 + 5 $ Shift $ 3 *
5 $ E * n + 5 $ Reduce $ 3 * n E.val = n.val
6 $ E * E + 5 $ Reduce $ 3 * 4 E1.val = E2.val * E3.val
7 $ E + 5 $ Shift $ 12

Dr. D. M. Akbar Hussain

Department of Electronic Systems 51

$ 5 $ S t $
8 $ E + 5 $ Shift $ 12 +
9 $ E + n $ Reduce $ 12 + n E.val = n.val
10 $ E + E $ Reduce $ 12 + 5 E1.val = E2.val * E3.val
11 $ E $ $ 17

Attribute ComputationAttribute Computation

Attributes as Parameter/Return Values
For recursive procedures/functions Inherited attributes can
be passed as argument parameters and Synthesized
attributes as return values

Dr. D. M. Akbar Hussain

Department of Electronic Systems 52



Dr. D.M. Akbar Hussain

Compiler Construction F6S 27

Type Expressions and Type ConstructorsType Expressions and Type Constructors
Array

Data Types & Type CheckingData Types & Type Checking

Record

Union

Pointer

Function

Class

Type Names, Type Declaration and Recursive TypesType Names, Type Declaration and Recursive Types

Type EquivalenceType Equivalence

Dr. D. M. Akbar Hussain

Department of Electronic Systems 53

Type EquivalenceType Equivalence

Type Inference and Type CheckingType Inference and Type Checking

OverloadingOverloading

Additional Topics in Type CheckingAdditional Topics in Type Checking

gg
•• Same operator name is used for two different operations.Same operator name is used for two different operations.

Type Conversion and CoercionType Conversion and Coercion
•• A common type must be found for mixed types.A common type must be found for mixed types.

Polymorphic  TypingPolymorphic  Typing
•• Language constructs have more than one typeLanguage constructs have more than one type

Dr. D. M. Akbar Hussain

Department of Electronic Systems 54

Language constructs have more than one type.Language constructs have more than one type.


