
Dr. D.M. Akbar Hussain

Compiler Construction F6S 1

Dr. D. M. Akbar Hussain

Department of Electronic Systems 1

Runtime EnvironmentRuntime Environment

Basically, related to the hardware structure of registers
and memory of a machine which serves as a tool for
managing information for execution.

Fully Static Environment
FORTRAN

Stack Based Environment
C, C++, Pascal and Ada

Dr. D. M. Akbar Hussain

Department of Electronic Systems 2

Fully Dynamic Environment
LISP

Dr. D.M. Akbar Hussain

Compiler Construction F6S 2

Memory DivisionMemory Division

Memory is sub-divided conceptually into Code and Data area

Code area addresses are computed at compile time.

Same is not true for data area.

Addresses can be computer for global and static data.

An Exception: Global/static data related to const, strings are
typically inserted into the code by the compiler, same is true for
global functions as there entry points are known.

Dr. D. M. Akbar Hussain

Department of Electronic Systems 3

Code Memory

Data Memory

Code MemoryCode Memory

Entry Point to function 1 Entry Point to function 1

E P i f i 2Entry Point to function 2

Entry Point to function 3

Entry Point to function 4

Entry Point to function n

Entry Point to function 2

Entry Point to function 3

Entry Point to function 4

Entry Point to function n

Dr. D. M. Akbar Hussain

Department of Electronic Systems 4

Dr. D.M. Akbar Hussain

Compiler Construction F6S 3

Data MemoryData Memory

Global/Static Area

StackStack

Free Space

Dr. D. M. Akbar Hussain

Department of Electronic Systems 5

Heap

Activation RecordActivation Record

Space for Arguments

Space for housekeeping
and return address

Space for local variable

Space for local
temporaries

Dr. D. M. Akbar Hussain

Department of Electronic Systems 6

Stack Frame
Stack Pointer
Program Counter
Argument Pointer

Dr. D.M. Akbar Hussain

Compiler Construction F6S 4

Calling & Return OperationCalling & Return Operation

Determination of sequence of operations resulting from a call
(procedure/function)

IIssues:
Division of responsibility between caller and callee and how

much to rely on processor

As it is easy to call from the caller side but which also means
duplicating the same code every time a call is made

(space issue)

At a minimum caller must compute the arguments and place
them in callees record or some where callee can find it.

Dr. D. M. Akbar Hussain

Department of Electronic Systems 7

Machine registers are used at the time of call so status and all
necessary information has to be stored for later use when

returning from call.
Who should do it: Probably both (Caller & Callee).

Responsibility DivisionResponsibility Division

Parameters/Arguments

Control Link Callers Activation RecordControl Link

Links and Saved Status

Temporaries & Local Data

Parameters/Arguments

Control Link

Callers Activation Record

Callees Activation Record

Callers Responsibility

Dr. D. M. Akbar Hussain

Department of Electronic Systems 8

Links and Saved Status

Temporaries & Local Data

Callees Activation Record

sp
Callees Responsibility

Dr. D.M. Akbar Hussain

Compiler Construction F6S 5

Fully Static EnvironmentFully Static Environment

Code for main

Code for procedure (1)

Code for procedure (2)
Code Area

Code for procedure (n)

Activation record main

Activation record p(1)

Code Area

Dr. D. M. Akbar Hussain

Department of Electronic Systems 9

Activation record p(n)

Data Area

StackStack--Based EnvironmentBased Environment

Runtime Stack / Call Stack
Stack of Activation Record

Local Variables
Return Address

Temporaries
Saved Registers Previous FrameSaved Registers

Parameters / Arguments
Static Link

Local Variables
Return Address

Temporaries
Saved Registers

Parameters / Arguments

Frame Pointer

Previous Frame

Current Frame

Dr. D. M. Akbar Hussain

Department of Electronic Systems 10

Static Link
Stack Pointer

Next Frame

Dr. D.M. Akbar Hussain

Compiler Construction F6S 6

StackStack--Based EnvironmentBased Environment

Stack-Based without Local Procedures

#include <stdio.h>

int x, y;

int gcd (int u, int v)

{ if (v == 0) return u;

else return gcd (v, u%v); }

main()

{

scanf (”%d %d”, &x, &y);

printf (”%d \n”, gcd (x, y));

return 0;

Dr. D. M. Akbar Hussain

Department of Electronic Systems 11

}

Stack LayoutStack Layout

x = 15; y = 10;

main

u = 15; v = 10;

Global/Static Variable

Activation record ”main”
#include <stdio.h>

int x, y;

int gcd (int u, int v)

{ if (v == 0) return u;
control link

return address

u = 10; v = 5;
control link

return address

u = 5; v = 0;
control link

Activation record 1 call gcd

Activation record 2 call gcd

{ if (v 0) return u;

else return gcd (v, u%v);
}

main()

{

scanf (”%d %d”, &x, &y);

printf (”%d \n”, gcd (x, y));

return 0;

}

Dr. D. M. Akbar Hussain

Department of Electronic Systems 12

control link
return address

Free Space

Activation record 3 call gcdfp

sp

Dr. D.M. Akbar Hussain

Compiler Construction F6S 7

ExampleExample

#include <stdio.h>
int x = 2; void g (int n); /* prototype */

void f (int n)()
{ static int x = 1;
g (n); x--;}

void g (int m)
{ int y = m - 1;
if (y > 0)

{ f (y); x--; g (y); }
}

main()
{

Dr. D. M. Akbar Hussain

Department of Electronic Systems 13

g (x);
return 0;
}

Stack During Second call to gStack During Second call to g

x = 2; x (from f) = 1;

main

m = 2;
l li k

Global/Static Variable

Activation record ”main”
#include <stdio.h>
int x = 2;
void g (int n); /* prototype */
void f (int n)

control link
return address

y = 1;

n = 1;
control link

return address

m = 1;

Activation record call to g

Activation record call to f

()
{ static int x = 1;
g (n); x--;}

void g (int m)
{ int y = m - 1;
if (y > 0)

{ f (y); x--; g (y); }
}

main()
{
g (x);

Dr. D. M. Akbar Hussain

Department of Electronic Systems 14

control link
return address

y = 0;

Free Space

Activation record call to g

fp

sp

return 0;
}

Dr. D.M. Akbar Hussain

Compiler Construction F6S 8

Stack During third call to gStack During third call to g

x = 1; x (from f) = 0;

main

Global/Static Variable

main

m = 2;
control link

return address
y = 1;

m = 1;
control link

return address

Activation record ”main”

Activation record call to g

Activation record call to g
fp

Dr. D. M. Akbar Hussain

Department of Electronic Systems 15

return address
y = 0;

Free Space

fp

sp

Activation TreesActivation Trees

main main

gcd (15, 10)

gcd (10, 5)

g (2)

f (1) g(1)

Dr. D. M. Akbar Hussain

Department of Electronic Systems 16

gcd (5, 0) g(1)

Explore using x = 4 ?

Dr. D.M. Akbar Hussain

Compiler Construction F6S 9

Calling/Return SequenceCalling/Return Sequence

• Compute the arguments and push them in the new activation record.
• Push the fp as the control link in the new activation record.us t e p as t e co t o t e ew act vat o eco d
• Change the fp so that it points to the beginning of the new activation

record (copy sp into fp).
• Store the return address in the new activation record.
• Jump to the code of the procedure to be called.

• Copy fp to sp
• Load control link into fp
• Jump to the return address
• Change the sp for popping

Dr. D. M. Akbar Hussain

Department of Electronic Systems 17

