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aa == bb **-- cc ++ bb **-- cc

aa == bb **-- cc ++ bb **-- cc
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aa == bb **-- cc ++ bb **-- cc
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Grammar RulesGrammar Rules Semantic RulesSemantic Rules
exp1 → id = exp2 exp1.pcode = “lda” || id.strval

++exp2.pcode ++ “stn”
exp → aexp exp.pcode = aexp.pcode
aexp1 → aexp2 + exp1.pcode = aexp2.pcode
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p p
factor

p p p p
++factor.pcode ++ “adi”

aexp → factor aexp.pcode = factor.pcode
factor → (exp) factor.pcode = exp.pcode
factor → num factor.pcode = “ldc” || num.strval
factor → id factor.pcode = “lod” || id.strval

Synthesized 3AC

Grammar Rules Semantic Rules
exp1 → id = exp2 exp1.name = exp2.name 

exp1 tacode = exp2 tacode ++exp1.tacode = exp2.tacode ++
id.strval || “=“ || exp2.name 

exp → aexp exp.name = aexp.name
exp.tacode = aexp.tacode

aexp1 → aexp2 + 
factor

exp1.name = newtemp ()
aexp1.tacode = aexp2.tacode ++ factor.tacode

++ aexp1.name || “=“ || aexp2.name
|| “+” || factor.name
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aexp → factor aexp.name = factor.name   aexp.tacode = 
factor.tacode

factor → (exp) factor.name = exp.name     factor.tacode = 
exp.tacode

factor → num factor.name = num.strval    factor.tacode = “ ”
factor → id factor.name = id.strval factor.tacode = “ ”
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Practical Code GenerationPractical Code Generation
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Generating Target Code from ICGenerating Target Code from IC
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x

Address of x

3 + x
Address of x

x + 3
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x + 3

x + 3 + 4



Dr. D.M. Akbar Hussain

Compiler Construction F6S 10

3
x

Add fAddress of x

T1
Address of x

T1
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4
T1

T2

T2 +

x, T1 + 4
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x, T1 4 
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x
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100

a *(a + i)
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a + s * i
i
a
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(x = x+3 ) + 4
Variable x in this expression is stored locally on the stack frame.
Assembly code for this expression:

d t [b 2]mov ax, word ptr [bp-2]
add ax, 3
mov word ptr [bp-2] , ax
add ax, 4
Register ax is used as the main temporary location for the computation.

Location of the local variable x is bp-2.

bp base pointer register as the frame pointer and integer variables occupy two bytes on this
machine.

The first instruction moves the value of the x to ax (the brackets in the addresses [bp-2] indicate
an indirect rather than an immediate load).

Dr. D. M. Akbar Hussain

Department of Electronic Systems
43

The second instruction adds the constant 3 to this register.

The third instruction then moves this value to the location of x.

Finally, the forth instruction adds 4 to ax, so that the final vale of the expression is left in this
register, where it may be used for further computations.

Note the address of x for this assignment in the third instruction is not pre-computed (as an lda
P-code instruction would suggest). A static simulation of the intermediate code, together with
knowledge of available addressing modes, can delay the computation of the address of x until this
point.
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if and whileif and while
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Consider Definition now for f:
_f proc near

push bp
mov bp,sp
add ax,word ptr [bp+4]
inc ax
jmp short @1@58

@1@58:
pop bp
ret

_f endp

The return address is on the stack between the control link (the old bp) and the argument as a result
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The return address is on the stack between the control link (the old bp) and the argument as a result
of the caller’s execution of a call instruction. This, the old bp is at the top of the stack, the return
address is at location bp+2 (addresses are two bytes in this example), the parameter x is at location
bp+4, and the parameter y is at location bp+6. The body of f then corresponds to the code that comes
next:

Mov ax,word ptr [bp+4]
Add ax,word ptr [bp+6]
Inc ax

which loads x into ax, adds y to it, and then increment it by one.
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The code generated for this statement:
x.j = x.i;

mov ax, word ptr [bp-6] (loads x.i into ax)
mov word ptr [bp-3], ax (stores this value to x.j)

The offset computation for j(−6 + 3 = −3) is performed statically by the
compiler.

The code generated for the statement:
p -> lchild = p;
mov word ptr [si+2], si
N t h th i di ti d th ff t t ti bi d i t
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Note how the indirection and the offset computation are combined into
a single instruction.

Finally, the code generated for the statement:
p = p -> rchild;
mov si, word ptr [si+4]
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cmp bx,dxp ,
jle short @1@86
inc dx
jmp short @1@114

@1@86:
dec bx

@1@114:
This code uses the same sequential organization shown earlier but note this code does not compute
the actual logical value of the expression x > y but simply uses the condition code directly.
The code generated by the Borland compiler for the while-statement is as follows:

jmp short @1@170
@1@142:

sub dx bx
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sub dx,bx
@1@170:

cmp dx,bx
jl short @1@142

This uses a slightly different sequential organization given earlier, here test is placed at the end, and
an initial unconditional jump is made to this test.
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x = 1;
…..
y = 0;
……
if ( ) 10if (y) x = 10;
…….
if (x) y = 100;

Constant Propagation
x = 1;
…
y = 0;
….
if (0) x = 10;
….
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if (x) y = 100;

Un-reachable
x = 1;
…
y = 0;
….
if (x) y = 100;
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Example Flow GraphExample Flow Graph
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