
Dr. D.M. Akbar Hussain

Compiler Construction F6S 1

Dr. D. M. Akbar Hussain

Department of Electronic Systems
1

Dr. D. M. Akbar Hussain

Department of Electronic Systems
2

Dr. D.M. Akbar Hussain

Compiler Construction F6S 2

Dr. D. M. Akbar Hussain

Department of Electronic Systems
3

Dr. D. M. Akbar Hussain

Department of Electronic Systems
4

Dr. D.M. Akbar Hussain

Compiler Construction F6S 3

Dr. D. M. Akbar Hussain

Department of Electronic Systems
5

Dr. D. M. Akbar Hussain

Department of Electronic Systems
6

Dr. D.M. Akbar Hussain

Compiler Construction F6S 4

Dr. D. M. Akbar Hussain

Department of Electronic Systems
7

Dr. D. M. Akbar Hussain

Department of Electronic Systems
8

Dr. D.M. Akbar Hussain

Compiler Construction F6S 5

Dr. D. M. Akbar Hussain

Department of Electronic Systems
9

aa == bb **-- cc ++ bb **-- cc

aa == bb **-- cc ++ bb **-- cc

Dr. D. M. Akbar Hussain

Department of Electronic Systems
10

Dr. D.M. Akbar Hussain

Compiler Construction F6S 6

aa == bb **-- cc ++ bb **-- cc

Dr. D. M. Akbar Hussain

Department of Electronic Systems
11

Dr. D. M. Akbar Hussain

Department of Electronic Systems
12

Dr. D.M. Akbar Hussain

Compiler Construction F6S 7

Grammar RulesGrammar Rules Semantic RulesSemantic Rules
exp1 → id = exp2 exp1.pcode = “lda” || id.strval

++exp2.pcode ++ “stn”
exp → aexp exp.pcode = aexp.pcode
aexp1 → aexp2 + exp1.pcode = aexp2.pcode

Dr. D. M. Akbar Hussain

Department of Electronic Systems
13

p p
factor

p p p p
++factor.pcode ++ “adi”

aexp → factor aexp.pcode = factor.pcode
factor → (exp) factor.pcode = exp.pcode
factor → num factor.pcode = “ldc” || num.strval
factor → id factor.pcode = “lod” || id.strval

Synthesized 3AC

Grammar Rules Semantic Rules
exp1 → id = exp2 exp1.name = exp2.name

exp1 tacode = exp2 tacode ++exp1.tacode = exp2.tacode ++
id.strval || “=“ || exp2.name

exp → aexp exp.name = aexp.name
exp.tacode = aexp.tacode

aexp1 → aexp2 +
factor

exp1.name = newtemp ()
aexp1.tacode = aexp2.tacode ++ factor.tacode

++ aexp1.name || “=“ || aexp2.name
|| “+” || factor.name

Dr. D. M. Akbar Hussain

Department of Electronic Systems
14

aexp → factor aexp.name = factor.name aexp.tacode =
factor.tacode

factor → (exp) factor.name = exp.name factor.tacode =
exp.tacode

factor → num factor.name = num.strval factor.tacode = “ ”
factor → id factor.name = id.strval factor.tacode = “ ”

Dr. D.M. Akbar Hussain

Compiler Construction F6S 8

Practical Code GenerationPractical Code Generation

Dr. D. M. Akbar Hussain

Department of Electronic Systems
15

Practical Code GenerationPractical Code Generation

Dr. D. M. Akbar Hussain

Department of Electronic Systems
16

Dr. D.M. Akbar Hussain

Compiler Construction F6S 9

Generating Target Code from ICGenerating Target Code from IC

Dr. D. M. Akbar Hussain

Department of Electronic Systems
17

3
x

Address of x

3 + x
Address of x

x + 3

Dr. D. M. Akbar Hussain

Department of Electronic Systems
18

4
x + 3

x + 3 + 4

Dr. D.M. Akbar Hussain

Compiler Construction F6S 10

3
x

Add fAddress of x

T1
Address of x

T1

4

Dr. D. M. Akbar Hussain

Department of Electronic Systems
19

4
T1

T2

T2 +

x, T1 + 4

Dr. D. M. Akbar Hussain

Department of Electronic Systems
20

x, T1 4

x 3

Dr. D.M. Akbar Hussain

Compiler Construction F6S 11

x

Dr. D. M. Akbar Hussain

Department of Electronic Systems
21

100

a *(a + i)

Dr. D. M. Akbar Hussain

Department of Electronic Systems
22

a + s * i
i
a

Dr. D.M. Akbar Hussain

Compiler Construction F6S 12

Dr. D. M. Akbar Hussain

Department of Electronic Systems
23

Dr. D. M. Akbar Hussain

Department of Electronic Systems
24

Dr. D.M. Akbar Hussain

Compiler Construction F6S 13

Dr. D. M. Akbar Hussain

Department of Electronic Systems
25

Dr. D. M. Akbar Hussain

Department of Electronic Systems
26

Dr. D.M. Akbar Hussain

Compiler Construction F6S 14

Dr. D. M. Akbar Hussain

Department of Electronic Systems
27

Dr. D. M. Akbar Hussain

Department of Electronic Systems
28

Dr. D.M. Akbar Hussain

Compiler Construction F6S 15

Dr. D. M. Akbar Hussain

Department of Electronic Systems
29

Dr. D. M. Akbar Hussain

Department of Electronic Systems
30

Dr. D.M. Akbar Hussain

Compiler Construction F6S 16

Dr. D. M. Akbar Hussain

Department of Electronic Systems
31

Dr. D. M. Akbar Hussain

Department of Electronic Systems
32

Dr. D.M. Akbar Hussain

Compiler Construction F6S 17

Dr. D. M. Akbar Hussain

Department of Electronic Systems
33

Dr. D. M. Akbar Hussain

Department of Electronic Systems
34

Dr. D.M. Akbar Hussain

Compiler Construction F6S 18

Dr. D. M. Akbar Hussain

Department of Electronic Systems
35

Dr. D. M. Akbar Hussain

Department of Electronic Systems
36

Dr. D.M. Akbar Hussain

Compiler Construction F6S 19

Dr. D. M. Akbar Hussain

Department of Electronic Systems
37

Dr. D. M. Akbar Hussain

Department of Electronic Systems
38

Dr. D.M. Akbar Hussain

Compiler Construction F6S 20

Dr. D. M. Akbar Hussain

Department of Electronic Systems
39

Dr. D. M. Akbar Hussain

Department of Electronic Systems
40

Dr. D.M. Akbar Hussain

Compiler Construction F6S 21

Dr. D. M. Akbar Hussain

Department of Electronic Systems
41

Dr. D. M. Akbar Hussain

Department of Electronic Systems
42

Dr. D.M. Akbar Hussain

Compiler Construction F6S 22

(x = x+3) + 4
Variable x in this expression is stored locally on the stack frame.
Assembly code for this expression:

d t [b 2]mov ax, word ptr [bp-2]
add ax, 3
mov word ptr [bp-2] , ax
add ax, 4
Register ax is used as the main temporary location for the computation.

Location of the local variable x is bp-2.

bp base pointer register as the frame pointer and integer variables occupy two bytes on this
machine.

The first instruction moves the value of the x to ax (the brackets in the addresses [bp-2] indicate
an indirect rather than an immediate load).

Dr. D. M. Akbar Hussain

Department of Electronic Systems
43

The second instruction adds the constant 3 to this register.

The third instruction then moves this value to the location of x.

Finally, the forth instruction adds 4 to ax, so that the final vale of the expression is left in this
register, where it may be used for further computations.

Note the address of x for this assignment in the third instruction is not pre-computed (as an lda
P-code instruction would suggest). A static simulation of the intermediate code, together with
knowledge of available addressing modes, can delay the computation of the address of x until this
point.

Dr. D. M. Akbar Hussain

Department of Electronic Systems
44

Dr. D.M. Akbar Hussain

Compiler Construction F6S 23

if and whileif and while

Dr. D. M. Akbar Hussain

Department of Electronic Systems
45

Dr. D. M. Akbar Hussain

Department of Electronic Systems
46

Dr. D.M. Akbar Hussain

Compiler Construction F6S 24

Consider Definition now for f:
_f proc near

push bp
mov bp,sp
add ax,word ptr [bp+4]
inc ax
jmp short @1@58

@1@58:
pop bp
ret

_f endp

The return address is on the stack between the control link (the old bp) and the argument as a result

Dr. D. M. Akbar Hussain

Department of Electronic Systems
47

The return address is on the stack between the control link (the old bp) and the argument as a result
of the caller’s execution of a call instruction. This, the old bp is at the top of the stack, the return
address is at location bp+2 (addresses are two bytes in this example), the parameter x is at location
bp+4, and the parameter y is at location bp+6. The body of f then corresponds to the code that comes
next:

Mov ax,word ptr [bp+4]
Add ax,word ptr [bp+6]
Inc ax

which loads x into ax, adds y to it, and then increment it by one.

Dr. D. M. Akbar Hussain

Department of Electronic Systems
48

Dr. D.M. Akbar Hussain

Compiler Construction F6S 25

Dr. D. M. Akbar Hussain

Department of Electronic Systems
49

The code generated for this statement:
x.j = x.i;

mov ax, word ptr [bp-6] (loads x.i into ax)
mov word ptr [bp-3], ax (stores this value to x.j)

The offset computation for j(−6 + 3 = −3) is performed statically by the
compiler.

The code generated for the statement:
p -> lchild = p;
mov word ptr [si+2], si
N t h th i di ti d th ff t t ti bi d i t

Dr. D. M. Akbar Hussain

Department of Electronic Systems
50

Note how the indirection and the offset computation are combined into
a single instruction.

Finally, the code generated for the statement:
p = p -> rchild;
mov si, word ptr [si+4]

Dr. D.M. Akbar Hussain

Compiler Construction F6S 26

Dr. D. M. Akbar Hussain

Department of Electronic Systems
51

cmp bx,dxp ,
jle short @1@86
inc dx
jmp short @1@114

@1@86:
dec bx

@1@114:
This code uses the same sequential organization shown earlier but note this code does not compute
the actual logical value of the expression x > y but simply uses the condition code directly.
The code generated by the Borland compiler for the while-statement is as follows:

jmp short @1@170
@1@142:

sub dx bx

Dr. D. M. Akbar Hussain

Department of Electronic Systems
52

sub dx,bx
@1@170:

cmp dx,bx
jl short @1@142

This uses a slightly different sequential organization given earlier, here test is placed at the end, and
an initial unconditional jump is made to this test.

Dr. D.M. Akbar Hussain

Compiler Construction F6S 27

Dr. D. M. Akbar Hussain

Department of Electronic Systems
53

Dr. D. M. Akbar Hussain

Department of Electronic Systems
54

Dr. D.M. Akbar Hussain

Compiler Construction F6S 28

Dr. D. M. Akbar Hussain

Department of Electronic Systems
55

Dr. D. M. Akbar Hussain

Department of Electronic Systems
56

Dr. D.M. Akbar Hussain

Compiler Construction F6S 29

Dr. D. M. Akbar Hussain

Department of Electronic Systems
57

Dr. D. M. Akbar Hussain

Department of Electronic Systems
58

Dr. D.M. Akbar Hussain

Compiler Construction F6S 30

Dr. D. M. Akbar Hussain

Department of Electronic Systems
59

Dr. D. M. Akbar Hussain

Department of Electronic Systems
60

Dr. D.M. Akbar Hussain

Compiler Construction F6S 31

Dr. D. M. Akbar Hussain

Department of Electronic Systems
61

Dr. D. M. Akbar Hussain

Department of Electronic Systems
62

Dr. D.M. Akbar Hussain

Compiler Construction F6S 32

x = 1;
…..
y = 0;
……
if () 10if (y) x = 10;
…….
if (x) y = 100;

Constant Propagation
x = 1;
…
y = 0;
….
if (0) x = 10;
….

Dr. D. M. Akbar Hussain

Department of Electronic Systems
63

if (x) y = 100;

Un-reachable
x = 1;
…
y = 0;
….
if (x) y = 100;

Dr. D. M. Akbar Hussain

Department of Electronic Systems
64

Dr. D.M. Akbar Hussain

Compiler Construction F6S 33

Dr. D. M. Akbar Hussain

Department of Electronic Systems
65

Dr. D. M. Akbar Hussain

Department of Electronic Systems
66

Dr. D.M. Akbar Hussain

Compiler Construction F6S 34

Example Flow GraphExample Flow Graph

Dr. D. M. Akbar Hussain

Department of Electronic Systems
67

Dr. D. M. Akbar Hussain

Department of Electronic Systems
68

