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Controller Design Based 
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Desirable Controller Features

0. Stable
1. Quick responding
2. Adequate disturbance rejection
3. Insensitive to model, measurement errors
4. Avoids excessive controller action
5. Suitable over a wide range of operating conditions

Impossible to satisfy all 5 unless self-tuning. Use 
“optimum sloppiness"
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Alternatives for Controller Design

1.Tuning correlations – most limited to 1st order plus 
dead time
2.Closed-loop transfer function - analysis of stability or 
response characteristics.
3.Repetitive simulation (requires computer software 
like MATLAB and Simulink)
4.Frequency response - stability and performance 
(requires computer simulation and graphics)
5.On-line controller cycling (field tuning)
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Controller Synthesis - Time Domain
Time-domain techniques can be classified into two 
groups:
(a) Criteria based on a few points in the response
(b) Criteria based on the entire response, or integral 
criteria
Approach (a): settling time, % overshoot, rise time, decay 
ratio (Fig. 5.10 can be viewed as closed-loop response)

Several methods based on 1/4 decay ratio have been 
proposed: Cohen-Coon, Ziegler-Nichols

Process model ( )      (1st order)
1
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θ

τ
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=
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Comparison of Ziegler-Nichols and Cohen-Coon Equations 
for Controller Tuning (1940’s, 50’s) 

 
Controller Ziegler-Nichols Cohen-Coon 
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Approach (b)

1.  Integral of square error (ISE)

2.  Integral of absolute value of error (IAE)

3.  Time-weighted IAE

Pick controller parameters to minimize integral.

IAE      allows larger deviation than ISE (smaller overshoots)
ISE      longer settling time
ITAE   weights errors occurring later more heavily

Approximate optimum tuning parameters are correlated
with   K, θ, τ (Table 12.3).

[ ]∫
∞

=
0

2 dt)t(eISE

∫
∞

=
0

dt)t(eIAE

∫
∞
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Summary of Tuning Relationships

1.  KC is inversely proportional to KPKVKM   .

2.  KC decreases as  θ/τ increases.

3.  τI and τD increase as θ/τ increases (typically τD = 
0.25 τI ).

4.  Reduce Kc, when adding more integral action; 
increase Kc, when adding derivative action

5.  To reduce oscillation, decrease KC and increase τI .
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Disadvantages of Tuning Correlations

1.  Stability margin is not quantified.

2.  Control laws can be vendor - specific.

3.  First order + time delay model can be inaccurate.

4.  Kp, τ, and θ can vary.

5.  Resolution, measurement errors decrease stability 
margins.

6.  ¼ decay ratio not conservative standard (too 
oscillatory).
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Direct Synthesis

( G includes Gm, Gv)

1.  Specify closed-loop response (transfer function)

2. Need process model, G (= GPGMGV)

3. Solve for Gc,
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Example: Second Order Process with PI Controller 
Can Yield Second Order Closed-loop Response

PI: or

Let τΙ = τ1, where τ1 > τ2

Canceling terms,
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2nd order response with...

1 2

CK K
τ ττ = and 1

2

1
2 CK K

τζ
τ

=
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2 Select  Kc to give 5.04.0 −=ζ (overshoot)

Figure.  Step response of underdamped second-order processes 
and first-order process.

Direct Synthesis

( G includes Gm, Gv)

1.  Specify closed-loop response (transfer function)

2. Need process model,      (= GPGMGV)

3. Solve for Gc,

GG
GG

Y
Y

C
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Specify Closed – Loop Transfer Function

(12 6)
1

s

sp cd

Y e
Y s

θ

τ

−⎛ ⎞
= −⎜ ⎟⎜ ⎟ +⎝ ⎠

(first – order response, no offset)

( ),  c speed of response θ = process time delay in Gτ =

But other variations of (12-6) can be used (e.g., replace time delay
with polynomial approximation)

•c
c

1 1If  θ = 0, then (12 - 3b) yields  G  = )    (12 - 5)
G τ s%

c
c c c

K τs +1 τ 1For G =  , G  = = +         (PI)
τs +1 Kτ s Kτ Kτ s

%

Deviation of PI Controller for FOPTD Process

Consider the standard first-order-plus-time-delay model,

( )
θ

(12-10)
τ 1

sKeG s
s

−
=

+
%

Substituting and rearranging gives a PI controller,

with the following controller settings:( )1 1/ τ ,c c IG K s= +
1 τ , τ τ (12-11)
θ τc I

c
K

K
= =

+
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Specify closed-loop response as FOPTD (12-6), but
approximate  - se - - s.θ θ%1
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let

(12-3b)
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Derivation of PID Controller for FOPTD Process:
(1 )2( )

1 ( 1)(1 )2

s K sKeG s
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θ θ
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= ≈

+ + +
%

2 1
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⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠= ⎜ ⎟⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

%

Use of FOPTD closed-loop response (12-6) and time delay 
approximation gives a PID controller in parallel form,

11 τ (12-13)
τc c D

I
G K s

s
⎛ ⎞

= + +⎜ ⎟
⎝ ⎠

where

1 2 1 2
1 2

1 2

τ τ τ τ1 , τ τ τ , τ (12-14)
τ τ τc I D
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K

K θ
+
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Second-Order-plus-Time-Delay (SOPTD) Model

Consider a second-order-plus-time-delay model,

( ) ( )( )
θ

1 2
(12-12)

τ 1 τ 1

sKeG s
s s

−
=

+ +
%
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Consider three values of the desired closed-loop time constant:    
τ = 1, 3, and 10. Evaluate the controllers for unit step changes in 
both the set point and the disturbance, assuming that Gd = G. 
Perform the evaluation for two cases:

a. The process model is perfect (    = G).
b. The model gain is      = 0.9, instead of the actual value, K = 2. 

This model error could cause a robustness problem in the 
controller for K = 2.

G%

K%

( )( )
0.9

10 1 5 1

seG
s s

−
=

+ +
%
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Example 12.1
Use the DS design method to calculate PID controller settings for 
the process:

( )( )
2

10 1 5 1

seG
s s

−
=

+ +
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The IMC controller settings for this example are:

3.333.333.33
151515
1.514.178.33
0.6821.883.75

τ 1c = τ 3c = 10cτ =

( )2cK K =%

( )0.9cK K =%

τI

τD

Note only Kc is affected by the change in process gain.

The values of Kc decrease as      increases, but the values of       
and       do not change, as indicated by Eq. 12-14.

τc τI
τD

Figure 12.3 Simulation results for Example 12.1 (a): correct
model gain.
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Figure 12.4  Simulation results for Example 12.1 (b):
incorrect model gain.
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Controller Tuning Relations

Model-based design methods such as DS and IMC produce PI or 
PID controllers for certain classes of process models, with one 
tuning parameter τc (see Table 12.1)

C
ha

pt
er

 1
2

1. >  0.8 and (Rivera et al., 1986)

2. (Chien and Fruehauf, 1990)

3. (Skogestad, 2003)

τ /θc τ 0.1τc >

τ τ θc> >

τ θc =

• Several IMC guidelines for      have been published for the 
model in Eq. 12-10:

cτ
How to Select τc?
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Tuning for Lag-Dominant Models

• First- or second-order models with relatively small time delays     
are referred to as lag-dominant models. 

• The IMC and DS methods provide satisfactory set-point 
responses, but very slow disturbance responses, because the 
value of      is very large. 

• Fortunately, this problem can be solved in three different ways.

Method 1: Integrator Approximation

τI

( )θ / τ<<1

*Approximate ( ) by ( )
1

where * / .

s sKe K eG s G s
s s

K K

−θ −θ
= =

τ +
= τ

% %

• Then can use the IMC tuning rules (Rule M or N) 
to specify the controller settings.
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( )Iτ τ=

Method 2.  Limit the Value of τI

• Skogestad (2003) has proposed limiting the value of     :

( ){ }1τ min τ ,4 τ θ (12-34)I c= +

τI

where τ1 is the largest time constant (if there are two). 

Method 3.  Design the Controller for Disturbances, Rather 
Set-point Changes

• The desired CLTF is expressed in terms of (Y/D)d, rather than (Y/Ysp)d

• Reference: Chen & Seborg (2002)
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Example 12.4

Consider a lag-dominant model with θ / τ 0.01:=

( ) 100
100 1

sG s e
s

−=
+

%

Design three PI controllers:

a) IMC

b) IMC              based on the integrator approximation in Eq. 12-
33

c) IMC             with Skogestad’s modification (Eq. 12-34)

( )τ 1c =

( )τ 2c =

( )τ 1c =
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Evaluate the three controllers by comparing their performance 
for unit step changes in both set point and disturbance. Assume 
that the model is perfect and that Gd(s) = G(s).

Solution

The PI controller settings are:

80.5(c) Skogestad
50.556(b) Integrator approximation

1000.5(a) IMC

KcController Iτ
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Figure 12.8. Comparison 
of set-point responses 
(top) and disturbance 
responses (bottom) for 
Example 12.4. The 
responses for the 
integrator approximation 
and Chen and Seborg 
(discussed in textbook) 
methods are essentially 
identical.
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On-Line Controller Tuning
1. Controller tuning inevitably involves a tradeoff between 

performance and robustness.

2. Controller settings do not have to be precisely determined. In 
general, a small change in a controller setting from its best 
value (for example, ±10%) has little effect on closed-loop 
responses.

3. For most plants, it is not feasible to manually tune each 
controller. Tuning is usually done by a control specialist 
(engineer or technician) or by a plant operator. Because each 
person is typically responsible for 300 to 1000 control loops, it 
is not feasible to tune every controller.

4. Diagnostic techniques for monitoring control system 
performance are available.
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Controller Tuning and 
Troubleshooting Control 
Loops
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Ziegler-Nichols Rules:
These well-known tuning rules were published by Z-N 
in 1942:

-
-
PU/8

-
PU/1.2
PU/2

0.5 KCU

0.45 KCU

0.6 KCU

P
PI
PID

τDτIKccontroller

Z-N controller settings are widely considered to be an 
"industry standard".

Z-N settings were developed to provide 1/4 decay 
ratio -- too oscillatory?
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Modified Z-N settings for PID control

PU/8
PU/3
PU/2

PU/2
PU/2
PU/3

0.6 KCU

0.33 KCU

0.2 KCU

original
Some overshoot
No overshoot

τDτIKccontroller
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Figure 12.15 Typical process reaction curves: (a) non-self-
regulating process, (b) self-regulating process.
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Figure 12.16 Process reaction curve for Example 12.8.
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Figure 12.17 Block diagram for Example 12.8.
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Previous chapter Next chapter
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