

Controller	Ziegler-Nichols	Cohen-Coon
Proportional	$KK_{C} = \left(\frac{\tau}{\theta} \right)$	$KK_C = \left(\frac{\tau}{\theta}\right) + \frac{\tau}{2}$
Proportional +	$KK_{C} = 0.9 \left(\frac{\tau}{\theta} \right)$	$KK_C = 0.9 \left(\frac{\tau}{\theta} \right) + 0$
Integral	$\frac{\tau_I}{2} = 3.33 \left(\frac{\theta}{\tau} \right)$	$\frac{\tau_I}{\tau} = \frac{\theta \left[3.33 + 0.33 \right]}{1.0 + 2.2 \left(\theta \right)}$
	$\tau = 5.55 \sqrt{\tau}$	У
Proportional +	$KK_{C} = 1.2 \left(\frac{\tau}{\theta} \right)$	$KK_C = 1.35(\tau_{\theta}) +$
Integral + Derivative	$\frac{\tau_{I}}{\tau} = 2.0 \left(\frac{\theta}{\tau}\right)$ $\frac{\tau_{D}}{\tau} = 0.5 \left(\frac{\theta}{\tau}\right)$	$\frac{\tau_I}{\tau} = \frac{\theta \left[32 + 6 \left(\frac{\theta}{\tau} \right) \right]}{13 + 8 \left(\frac{\theta}{\tau} \right)}$
Derivative	$\tau \qquad \langle i \rangle$	ý L,
	$\frac{\tau_D}{\tau} = 0.5 \left(\frac{\theta}{\tau} \right)$	$\frac{\tau_D}{\tau} = \frac{0.37 \left(\frac{\theta}{\tau}\right)}{1.0 + 0.2 \left(\frac{\theta}{\tau}\right)}$
	τ	$\frac{D}{\tau} = 1000000000000000000000000000000000000$

	roller Design Relations Bas r plus Time-Delay Model	sed on the ITAE	E Performance In	dex and a Firs
Type of Input	Type of Controller	Mode	Α	В
Load	PI	Р	0.859	-0.977
		Ι	0.674	-0.680
Load	PID	Р	1.357	-0.947
	`	I	0.842	-0.738
		D	0.381	0.995
Set point	PI	Р	0.586	-0.916
-		I	1.03 ^b	-0.165
Set point	PID	Р	0.965	-0.85
-		I	0.796 ^b	· - 0.1465
•		D	0.308	0.929

 $A(\theta/\tau)^{B}$ where $Y = KK_{c}$ for the proportional mode, τ/τ_{I} for the integral mode, elation: 1 ^bFor set-point changes, the design relation for the integral mode is $\tau/\tau_I = A + B(\theta/\tau)$. [8]

Specify Closed – Loop Transfer Function

$$\left(\frac{Y}{Y_{sp}}\right)_d = \frac{e^{-\theta s}}{\tau_c s + 1} \qquad (12 - 6)$$

(first - order response, no offset)

$$(\tau_c = speed of response, \theta = process time delay in G)$$

But other variations of (12-6) can be used (e.g., replace time delay with polynomial approximation)

If
$$\theta = 0$$
, then (12 - 3b) yields $G_c = \frac{1}{\tilde{G}} \cdot \frac{1}{\tau_c s}$ (12 - 5)
For $\tilde{G} = \frac{K}{\tau s + 1}$, $G_c = \frac{\tau s + 1}{K\tau_c s} = \frac{\tau}{K\tau_c} + \frac{1}{K\tau_c s}$ (PI)

Deviation of PI Controller for FOPTD Process

Consider the standard first-order-plus-time-delay model,

$$\tilde{G}(s) = \frac{Ke^{-\theta s}}{\tau s + 1} \qquad (12-10)$$

Chapter 12

Specify closed-loop response as FOPTD (12-6), but approximate $e^{-\theta s} \approx 1 - \theta s$.

Substituting and rearranging gives a PI controller,

 $G_c = K_c (1+1/\tau_I s)$, with the following controller settings:

$$K_c = \frac{1}{K} \frac{\tau}{\theta + \tau_c}, \quad \tau_I = \tau \quad (12-11)$$

	Derivation of PID Controller for FOPTD Process:
	let $\left(\frac{Y}{Y_{sp}}\right)_d = \frac{1-\frac{\theta}{2}s}{\tau_c s+1}$ $\tilde{G}(s) = \frac{Ke^{-\theta s}}{\tau s+1} \approx \frac{K(1-\frac{\theta}{2}s)}{(\tau s+1)(1+\frac{\theta}{2}s)}$
Chapter 12	$G_{c} = \frac{1}{\tilde{G}} \left(\frac{\left(\frac{Y}{Y_{sp}} \right)_{d}}{1 - \left(\frac{Y}{Y_{sp}} \right)_{d}} \right) $ (12-3b)
Cha	$G_{c} = \frac{(\tau s+1)(1+\theta/2s)}{K(1-\theta/2s)} \cdot \frac{\frac{1-\theta/2s}{\tau_{c}s+1}}{1-\frac{1-\theta/2s}{\tau_{c}s+1}} = \frac{(\tau s+1)(1+\theta/2s)}{K(\theta/2+\tau_{c})s} $ (12-2a)
	$K_{c} = \frac{1}{K} \frac{2\left(\frac{\tau}{\theta}\right) + 1}{2\left(\frac{\tau_{c}}{\theta}\right) + 1} \qquad \tau_{I} = \frac{\theta}{2} + \tau \qquad \tau_{D} = \frac{\tau}{2\left(\frac{\tau}{\theta}\right) + 1} \qquad (12-30)$

Second-Order-plus-Time-Delay (SOPTD) Model

Use of FOPTD closed-loop response (12-6) and time delay approximation gives a PID controller in parallel form,

Consider a second-order-plus-time-delay model,

$$\tilde{G}(s) = \frac{Ke^{-is}}{(\tau_1 s + 1)(\tau_2 s + 1)}$$
(12-12)

Chapter 12

$$G_c = K_c \left(1 + \frac{1}{\tau_I s} + \tau_D s \right) \tag{12-13}$$

where

$$K_c = \frac{1}{K} \frac{\tau_1 + \tau_2}{\tau_c + \theta}, \quad \tau_I = \tau_1 + \tau_2, \quad \tau_D = \frac{\tau_1 \tau_2}{\tau_1 + \tau_2}$$
 (12-14)

Cas		KcK	Settings for $G_c(s)$ (Chien	τμ
A	$\frac{K}{\tau s + 1}$	$\frac{\tau}{\tau_c}$	т	_
в	$\frac{K}{(\tau_1 s + 1)(\tau_2 s + 1)}$	$\frac{\tau_1 + \tau_2}{\tau_c}$	$\tau_1 + \tau_2$	$\frac{\tau_1\tau_2}{\tau_1+\tau_2}$
с	$\frac{K}{\tau^2 s^2 + 2\zeta \tau s + 1}$	$\frac{2\zeta\tau}{\tau_c}$	2ζτ	$\frac{\tau}{2\zeta}$
D	$\frac{K(-\beta s + 1)}{\tau^2 s^2 + 2\zeta \tau s + 1}, \ \beta > 0$	$\frac{2\zeta\tau}{\tau_c+\beta}$	2ζτ	$\frac{\tau}{2\zeta}$
Е	K s	$\frac{2}{\tau_c}$	$2\pi_c$	_
F	$\frac{K}{s(\tau s + 1)}$	$\frac{2\tau_c + \tau}{\tau_c^2}$	$2\tau_c + \tau$	$\frac{2\tau_c\tau}{2\tau_c+\tau}$
G	$\frac{Ke^{-\theta s}}{\tau s+1}$	$\frac{\tau}{\tau_c + \theta}$	τ	_
н	$\frac{Ke^{-\theta z}}{\tau s+1}$	$\frac{\tau + \frac{\theta}{2}}{\tau_c + \frac{\theta}{2}}$	$\tau + \frac{\theta}{2}$	$\frac{\tau\theta}{2\tau+\theta}$
I	$\frac{K(\tau_{3}s+1)e^{-\theta s}}{(\tau_{1}s+1)(\tau_{2}s+1)}$	$\frac{\tau_1+\tau_2-\tau_3}{\tau_c+\theta}$	$\tau_1+\tau_2-\tau_3$	$\frac{\tau_1\tau_2-(\tau_1+\tau_2-\tau_3)\tau_3}{\tau_1+\tau_2-\tau_3}$
J	$\frac{K(\tau_{3}s+1)e^{-\theta s}}{\tau^{2}s^{2}+2\zeta\tau s+1}$	$\frac{2\zeta\tau-\tau_3}{\tau_c+\theta}$	$2\zeta\tau-\tau_3$	$\frac{\tau^2-(2\zeta\tau-\tau_3)\tau_3}{2\zeta\tau-\tau_3}$
к	$\frac{K(-\tau_{3}s+1)e^{-\theta s}}{(\tau_{1}s+1)(\tau_{2}s+1)}$	$\frac{\tau_1+\tau_2+\frac{\tau_3\theta}{\tau_c+\tau_3+\theta}}{\tau_c+\tau_3+\theta}$	$\tau_1+\tau_2+\frac{\tau_3\theta}{\tau_c+\tau_3+\theta}$	$\frac{\tau_3\theta}{\tau_c+\tau_3+\theta}+\frac{\tau_1\tau_2}{\tau_1+\tau_2+\frac{\tau_3\theta}{\tau_c+\tau_3+\theta}}$
L	$\frac{K(-\tau_3s+1)e^{-\theta_s}}{\tau^2s^2+2\zeta\tau s+1}$	$\frac{2\zeta\tau+\frac{\tau_{3}\theta}{\tau_{c}+\tau_{3}+\theta}}{\tau_{c}+\tau_{e}+\theta}$	$2\zeta\tau+\frac{\tau_3\theta}{\tau_c+\tau_3+\theta}$	$\frac{\tau_3\theta}{\tau_c+\tau_3+\theta}+\frac{\tau^2}{2\zeta\tau+\frac{\tau_3\theta}{\tau_c+\tau_3+\theta}}$
М	$\frac{Ke^{-\theta s}}{s}$	$\frac{2\tau_c + \theta}{(\tau_c + \theta)^2}$	$2\pi_c + \theta$	_
Ν	$\frac{Ke^{-\theta_S}}{s}$	$\frac{2\tau_c+\theta}{\left(\tau_c+\frac{\theta}{2}\right)^2}$	$2 au_c + heta$	$\frac{\tau_c\theta+\frac{\theta^2}{4}}{2\tau_c+\theta}$
0	$\frac{Ke^{-\theta s}}{s(\tau s+1)}$	$\frac{2\tau_c + \tau + \theta}{(\tau_c + \theta)^2}$	$2\tau_c+\tau+\theta$	$\frac{(2\tau_c + \theta)\tau}{2\tau_c + \tau + \theta}$

Example 12.1

Use the DS design method to calculate PID controller settings for the process:

$$G = \frac{2e^{-s}}{(10s+1)(5s+1)}$$

Chapter 12

- Consider three values of the desired closed-loop time constant: $\tau = 1, 3$, and 10. Evaluate the controllers for unit step changes in both the set point and the disturbance, assuming that $G_d = G$. Perform the evaluation for two cases:
- a. The process model is perfect ($\tilde{G} = G$).
- b. The model gain is $\tilde{K} = 0.9$, instead of the actual value, K = 2. This model error could cause a robustness problem in the controller for K = 2. $\tilde{G} = \frac{0.9e^{-s}}{(10s+1)(5s+1)}$

	ntroller setti	ngs for this exam	ple are:
	$\tau_c = 1$	$\tau_c = 3$	$\tau_c = 10$
$(\tilde{K}=2)$	3.75	1.88	0.682
$e_{2}\left(\tilde{K}=2\right)$ $e_{2}\left(\tilde{K}=0.9\right)$	8.33	4.17	1.51
()	15	15	15
	3.33	3.33	3.33

Note only K_c is affected by the change in process gain.

Example 12.4

Design three PI controllers:

Consider a lag-dominant model with $\theta/\tau = 0.01$:

$$\tilde{G}(s) = \frac{100}{100s+1}e^{-s}$$

Chapter 12

- a) IMC (τ_c = 1)
 b) IMC (τ_c = 2) based on the integrator approximation in Eq. 12-33
- c) IMC ($\tau_c = 1$) with Skogestad's modification (Eq. 12-34)

Evaluate the three controllers by comparing their performance for unit step changes in both set point and disturbance. Assume that the model is perfect and that $G_d(s) = G(s)$.

Solution

Chapter 12

The PI controller settings are:

Controller	K _c	$ au_I$	
(a) IMC	0.5	100	
(b) Integrator approximation	0.556	5	
(c) Skogestad	0.5	8	

On-Line Controller Tuning

- 1. Controller tuning inevitably involves a tradeoff between performance and robustness.
- 2. Controller settings do not have to be precisely determined. In general, a small change in a controller setting from its best value (for example, $\pm 10\%$) has little effect on closed-loop responses.
- 3. For most plants, it is not feasible to manually tune each controller. Tuning is usually done by a control specialist (engineer or technician) or by a plant operator. Because each person is typically responsible for 300 to 1000 control loops, it is not feasible to tune every controller.
- 4. Diagnostic techniques for monitoring control system performance are available.

Chapter 12

	These well-kr in 1942:	iown tuning i	rules were p	oublished by Z-N
J	controller	K _c	τ	τ _D
	Р	0.5 K _{CU}	-	-
	PI	0.5 K _{CU} 0.45 K _{CU} 0.6 K _{CU}	P _U /1.2	-
5	PID	0.6 K _{CU}	$P_U/2$	$P_U/8$
	Z-N controlle "industry sta	•	e widely co	nsidered to be a
	7 N aattinga	wara davala	nod to prov	vide 1/4 decav

Z-N settings were developed to provide 1/4 decay ratio -- too oscillatory?

Modified Z-N settings for PID control

Chapter 12

τ_{D}	$\tau_{\rm I}$	K _c	controller
P _U /8	P _U /2	0.6 K _{CU}	original
$P_U/3$	$P_{\rm U}/2$	0.33 K _{CU}	Some overshoot
$P_U/2$	P _U /3	0.2 K _{CU}	No overshoot
P	0	00	

Ziegler-Nichols	Kc	τı	τD
 P	0.5Kcu		
PI	0.45Kcu	$P_{u}/1.2$	
PID	0.6Kcu	Pu/2	P _u /8
Tyreus-Luyben†	Kc	т	τD
PI	0.31Ka	2.2Pu	
PID	0.45Kcm	2.2Pu	Pu/6.3

20

