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MM10 Frequency Response DesignMM10 Frequency Response Design

Readings: 
• FC: p389-407: lead compensation 
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What Have We Talked about in MM9?
 Control design based on Bode plot

 Stability margins (Gain margin and phase margin)
 Transient performance 
 Steady-state performance 

 Nyquist Diagram 
 What’s Nyquist diagram?
 What we can gain from Nyquist diagram 

 Matlab functions: bode(), margin(), nyquist()
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Nyquist Criterion for Stability (MM9)
The Nyquist criterion states that: 
 P = the number of open-loop (unstable) poles of G(s)H(s) 
 N = the number of times the Nyquist diagram encircles –1

 clockwise encirclements of -1 count as positive 
encirclements 

 counter-clockwise (or anti-clockwise) encirclements of 
-1 count as negative encirclements 

 Z = the number of right half-plane (positive, real) poles of 
the closed-loop system

 The important equation: 
Z = P + N 
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Goals for this lecture (MM10)
 An illustrative example 

 Frequency response analysis
 Frequency response design

 Lead and lag compensators 
 What’s a lead/lag compensator?
 Their frequency features

 A systematical procedure for lead compensator design

 A practical design example – Beam and Ball Control 
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Control system design for a satellite tracking 
antenna  (one-dimentional)

 Design specifications: 
 Overshoot to a step input less than 16%; 
 Settling time to 2% to be less than 10 

sec.; 
 Tracking error to a ramp input of slope 

0.01rad/sec to be less than 0.01rad; 

 Sampling time to give at at least 10 
samples in a rise time. 

An Illustrative Example: Antenna Position Control
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 System model:

 Transfer function:  
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Example: Mathematical Modeling 
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 Transfer function: 

 Open-loop properties
 Step response 
 Impulse response
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impulse(tf(1,[10 1 0])); figure; 
step(tf(1,[10 1 0]),10)

Example: Open-Loop Analysis

Stability?
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 Different control structures
 Cascade controller: Gain, dynamic compensator?
 Feedback controller: Gain, dynamic compensator?
 Single or multiple loops?
 .....

G(s)K G(s)KD(s)

G(s)

KD(s)

G(s)

D2(s)

D1(s)

Example: Possible Control Structure
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G(s)K

sys=tf(1,[10 1 0]), 
1

-------------
10 s^2 + s
rlocus(sys)

Example: Just Gain Controller?
sys=tf(1,[10 1 0]), 
step(feedback(100*sys,1))
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syscl1=feedback(0.1*sys,1); bode(syscl1) ; figure, margin(0.1*sys)

Closed-loop 
transfer function

0.1
----------------
10 s^2 + s + 0.1
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Dynamic Compensation

 Objective: 
If a satisfactory process dynamics can not be obtained by 
a gain adjustment alone, some modification or 
compensation of the process dynamics is needed

1+KD(s)G(s)=0

Controller
KD(s)

Plant
G(s)
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Lead and Lag Compensators

 Lead compensation: acts mainly to lower rise time and 
decrease the transient overshoot:   

D(s)=(s+z)/(s+p)    with z < p
 Lag compensation: acts mainly to improve the steady-

state accuracy:                      
D(s)=(s+z)/(s+p)    with z > p

 Compensationis typically placed in series with the plant in 
the feedforward path 

Controller
KD(s)

Plant
G(s)
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Frequency Properties of Lead and Lag
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Lead and PD Controllers (I)

 PD compensation:     D(s)=K(TDs+1)
 Increasing the phase margin
 Amplify the high frequency noise

 Lead compensation: D(s)=K(Ts+1)/(Ts+1),     <1
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Lead and PD Controllers (II)

 Lead compensation: D(s)=K(Ts+1)/(Ts+1),     <1
 Lead compensator is a high-pass filter (app.PD control)
 It is used whenever substantial improvement in damping 

is required
 The maximum phase contribution is 

max

max

max

sin1
sin1

1













TExample: 

sysD=tf([10 1],[1 1])
bode(sysD)
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Example: PD Controller for Antenna Control (I)
 Design the low frequency gain K with respect to the steady-

state error specification: Tracking error to a ramp input of 
slope 0.01rad/sec to be less than 0.01rad

 Ramp Input (R(s) = 1/s^2): 
(MM5)

 Antenna system case..... K=1
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Example: PD Controller for Antenna Control (II)
 PD controller: D(s)=10s+1

sysd=tf(1,[10.0 1.0 0])*tf([10.0 1.0],1); 
syscl2=feedback(sysd,1); step(syscl2)

Check whether this controller is ok?
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Example: Intuitive Lead Design
 Design the low frequency gain K with respect to the steady-

state error specification  Antenna system case..... K=1
 Lead controller: D(s)=(10s+1)/(s+1)

sysd=tf(1,[10.0 1.0 0])*tf([10.0 1.0],[1 1]); 
syscl3=feedback(sysd,1); step(syscl3)
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Example: Comparison of PD and Lead Design
 bode(syscl2,syscl3); grid
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Goals for this lecture (MM10)
 An illustrative example 

 Frequency response analysis
 Frequency response design

 Lead and lag compensators 
 What’s a lead/lag compensator?
 Their frequency features

 A systematical procedure for lead compensator design 
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Lead Compensator Design Procedure (I)

 Step 1: Design the low frequency gain K with respect to the 
staedy-state error specification

Antenna system case..... K=1

 Step Input (R(s) = 1/s): 

 Ramp Input (R(s) = 1/s^2): 

 Parabolic Input (R(s) = 1/s^3): 



9/9/2011 Classical Control 22

Lead Compensator Design Procedure (II)

 Step 2: Determine the needed phase lead 
 Original  system PM: 

sys=tf(1,[10 1 0]), margin(sys)... PM=18 at 0.308
 Expected PM: 

Expected overshoot limit (16%)

Dampling ratio ξ ≥ 0.5

Expected PM ≈ 100*0.5=50 degree
 Directly needed phase lead: 50-18=32 degree
 Expected phase lead: 32+ (7~10) degree
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Lead Compensator Design Procedure (III)

Lead compensation: D(s)=K(Ts+1)/(Ts+1),     <1

 Step 3: Determine coefficient α

 Step 4: Determine coefficient T
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 Step 5: Draw the compensated frequency response, check PM
sysD=tf([4.622 1],[1.0137 1]); sysC=sys*sysD; margin(sysC); 

step(feedback(sysC,1))

Lead Compensator Design Procedure (IV)
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 Check the poles & zeros of the closed-loop...
syscl=feedback(sysC,1); pzmap(syscl); 

 Compare with a standard 2nd-order system...
Sys2=tf(0.3099, conv([1 0.384-0.403i], [1 0.384+0.403i])) ; 

step(feedback(sysC,1),Sys2)

Why this Lead Compensator doesn’t work? (I)
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Lead Compensator Design Procedure (V)

 Step 6: Iterate on the design until all specifications are met
sysD=tf([9.7457 1],[1.0911 1]) ; sysC=sys*sysD; margin(sysC); 

sysCL=feedback(sysC,1); step(sysCL)
sysD=tf([9 1],[1 1]);  sysCL=feedback(sys*sysD,1); step(sysCL)
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4.1 What’s B&B System?
 System: A ball rolls

along the track of a 
beam that is pivoted at 
some position. 

 Objective: To steadily 
place the ball at any 
given position along the 
track

 Strategy: To control 
the track angle through 
the control of a servo 
motor
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4.2 Why focus on B&B System?

 The ball and beam apparatus 
demonstrates the control 
problems associated with 
unstable systems. 

 An example of such a system is 
a missile during launch; active 
control is required to prevent 
the missile going unstable and 
toppling over. 
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4.4 AUE Beam and Ball System

a hybrid stepping motor

The potentiometer
and axle

TI MSP430 fix-point

Implement at least one 
control method 5-10% 
overshoot and 3-6 second 
settling time
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4.4.1 Modelling the AUE B&B System
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Block diagram of stepping motor and load

Lagrangian modelling technique
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4.4.2 Analysis of  the AUE B&B 
System

From the nyquist plot, it can be 
Observed that the system is 
unstable since -1 is encircled 
clockwise by the nyquist plot

The system is unstable if it is exposed 
to a step input. From this can it be 
concluded that the 
system needs some kind of controller. 



9/9/2011 Classical Control 33

4.4.3 Control Strategy  for the B&B System

 Cascade control 
 Master loop (outer loop)
 Slave loop (inner loop)
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Through bode plot it can be seen 
that the system has a cutoff 
frequency at appr. 15 rad/sec
The system is settled in approximately 0.3 sec

4.4.4 Control Design for Slave Loop
 The block “control” contains the P-controller, Kp2. 
 The slave loop must be faster enough (e.g., 10 times 

faster) comparing with the master loop

s4.4
1

2kp
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4.4.5 Control Design for Master Loop

the system has a phase
margin of 47.5 deg at a
frequency of 1.38 Hz

)1(  sKp D s4.4
1

452.67 2

0123.7
s
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4.4.6 Simulation Tests
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4.4.7 Real Test Videos
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Exercise 
Could you repeat the antenna design using

1. Continuous lead compensation; 
2. Emulation method for digital control; 

Such that the design specifications: 
 Overshoot to a step input less than 5%;
 Settling time to 1% to be less than 14 sec.; 
 Tracking error to a ramp input of slope 0.01rad/sec to 

be less than 0.01rad; 
 Sampling time to give at at least 10 samples in a rise 

time. 
(Write your analysis and program on a paper!)


