MM10 Frequency Response Design

Readings:

• FC: p389-407: lead compensation

What Have We Talked about in MM9?

- Control design based on Bode plot
 - Stability margins (Gain margin and phase margin)
 - Transient performance
 - Steady-state performance
- Nyquist Diagram
 - What's Nyquist diagram?
 - What we can gain from Nyquist diagram
- Matlab functions: bode(), margin(), nyquist()

Nyquist Criterion for Stability (MM9)

The Nyquist criterion states that:

- P = the number of open-loop (unstable) poles of G(s)H(s)
- N = the number of times the Nyquist diagram encircles -1
 - clockwise encirclements of -1 count as positive encirclements
 - counter-clockwise (or anti-clockwise) encirclements of
 -1 count as negative encirclements
- Z = the number of right half-plane (positive, real) poles of the closed-loop system
- The important equation:

Z = P + N

Goals for this lecture (MM10)

- An illustrative example
 - Frequency response analysis
 - Frequency response design
- Lead and lag compensators
 - What's a lead/lag compensator?
 - Their frequency features
- A systematical procedure for lead compensator design
- A practical design example Beam and Ball Control

An Illustrative Example: Antenna Position Control

Control system design for a satellite tracking antenna (one-dimentional)

Design specifications:

- Overshoot to a step input less than 16%;
- Settling time to 2% to be less than 10 sec.;
- Tracking error to a ramp input of slope
 0.01rad/sec to be less than 0.01rad;
- Sampling time to give at at least 10 samples in a rise time.

Example: Mathematical Modeling

System model:

$$J \ddot{\theta} + B \dot{\theta} = T_c + T_d$$

Transfer function:

$$\frac{\theta(s)}{U(s)} = \frac{1}{s(\frac{s}{a}+1)}, \quad a = \frac{B}{J} = 0.1, \quad u(t) = \frac{T_c(t)}{B}$$

9/9/2011

Classical Control

Example: Open-Loop Analysis

Transfer function:

all the second

$$\frac{\theta(s)}{U(s)} = \frac{1}{s(\frac{s}{a}+1)}, \quad a = \frac{B}{J} = 0.1, \quad u(t) = \frac{T_c(t)}{B}$$

Open-loop properties
 Step response
 Impulse response

impulse(tf(1,[10 1 0])); figure; step(tf(1,[10 1 0]),10)

10

Example: Possible Control Structure

Different control structures

- Cascade controller: Gain, dynamic compensator?
- **Feedback controller:** Gain, dynamic compensator?
 - Single or multiple loops?

. . . .

Example: Just Gain Controller?

syscl1=feedback(0.1*sys,1); bode(syscl1); figure, margin(0.1*sys)

Dynamic Compensation

Objective:

If a satisfactory process dynamics can not be obtained by a gain adjustment alone, some modification or compensation of the process dynamics is needed 1+KD(s)G(s)=0

Lead and Lag Compensators

Lead compensation: acts mainly to lower rise time and decrease the transient overshoot:

D(s)=(s+z)/(s+p) with z < p

Lag compensation: acts mainly to improve the steadystate accuracy:

D(s)=(s+z)/(s+p) with z > p

 Compensation typically placed in series with the plant in the feedforward path

Frequency Properties of Lead and Lag

Lead and PD Controllers (I) **PD** compensation: $D(s)=K(T_Ds+1)$ Increasing the phase margin Amplify the high frequency noise Lead compensation: $D(s)=K(Ts+1)/(\alpha Ts+1)$, $\alpha < 1$ Bode Diagram Bode Diagram (Bb) ų

(deg)

Lead and PD Controllers (II)

- Lead compensation: $D(s)=K(Ts+1)/(\alpha Ts+1)$, $\alpha < 1$
 - Lead compensator is a high-pass filter (app.PD control)
 - It is used whenever substantial improvement in damping is required

Classical

The maximum phase contribution is

Example: sysD=tf([10 1],[1 1]) bode(sysD)

9/9/2011

$$\omega_{\max} = \frac{1}{T \sqrt{\alpha}}$$
$$\alpha = \frac{1 - \sin \beta_{\max}}{1 + \sin \beta_{\max}}$$

Example: PD Controller for Antenna Control (I)

- Design the low frequency gain K with respect to the steadystate error specification: Tracking error to a ramp input of slope 0.01rad/sec to be less than 0.01rad
 - Ramp Input (R(s) = 1/s^2): $e(\infty) = \frac{1}{\lim_{s \to 0} sG(s)} = \frac{1}{K_r} \Longrightarrow K_r = \lim_{s \to 0} sG(s)$ (MM5)

Antenna system case..... K=1

Example: PD Controller for Antenna Control (II)

PD controller: D(s)=10s+1

sysd=tf(1,[10.0 1.0 0])*tf([10.0 1.0],1);
syscl2=feedback(sysd,1); step(syscl2)

Example: Intuitive Lead Design

- Design the low frequency gain K with respect to the steadystate error specification Antenna system case..... K=1
- Lead controller: D(s)=(10s+1)/(s+1)

sysd=tf(1,[10.0 1.0 0])*tf([10.0 1.0],[1 1]);
sysc13=feedback(sysc1 1): step(sysc13)

syscl3=feedback(sysd,1); step(syscl3)

Example: Comparison of PD and Lead Design bode(syscl2,syscl3); grid

an - Eller

Goals for this lecture (MM10)

- An illustrative example
 - Frequency response analysis
 - Frequency response design
- Lead and lag compensators
 - What's a lead/lag compensator?
 - Their frequency features

A systematical procedure for lead compensator design

Lead Compensator Design Procedure (I)

Step 1: Design the low frequency gain K with respect to the staedy-state error specification

Antenna system case..... K=1

Step Input (R(s) = 1/s):

$$e(\infty) = \frac{1}{1 + \lim_{s \to 0} G(s)} = \frac{1}{1 + K_{p}} \Rightarrow K_{p} = \lim_{s \to 0} G(s)$$
Ramp Input (R(s) = 1/s^2):

$$e(\infty) = \frac{1}{\lim_{s \to 0} SG(s)} = \frac{1}{K_{p}} \Rightarrow K_{p} = \lim_{s \to 0} SG(s)$$

Parabolic Input (R(s) = 1/s^3):
$$e(\infty) = \frac{1}{\lim_{s \to 0} s^2 G(s)} = \frac{1}{K_s} \Longrightarrow K_s = \lim_{s \to 0} s^2 G(s)$$

Lead Compensator Design Procedure (II)

- **Step 2**: Determine the needed phase lead
 - Original system PM:

sys=tf(1,[10 1 0]), margin(sys)... PM=18 at 0.308

Expected PM:

Expected overshoot limit (16%)

Dampling ratio $\xi \ge 0.5$

Expected PM $\approx 100*0.5=50$ degree

Directly needed phase lead: **50-18=32 degree**

Expected phase lead: **32+ (7~10) degree**

9/9/2011

Classical Control

Lead Compensator Design Procedure (III)

Lead compensation: $D(s)=K(Ts+1)/(\alpha Ts+1)$, $\alpha <1$

Step 3: Determine coefficient α

$$\alpha = \frac{1 - \sin \beta_{\max}}{1 + \sin \beta_{\max}} = \frac{1 - \sin 40}{1 + \sin 40} = 0.2174$$

Step 4: Determine coefficient **T**

$$T = \frac{1}{\omega_{\text{max}} \sqrt{\alpha}} = \frac{1}{(\omega_n / 2)\sqrt{\alpha}} = \frac{2}{0.92\sqrt{\alpha}} = 4.622$$

$$\omega_{\max} = \frac{1}{T \sqrt{\alpha}}$$
$$\alpha = \frac{1 - \sin \beta_{\max}}{1 + \sin \beta_{\max}}$$

9/9/2011

Classical Control

Lead Compensator Design Procedure (IV)

Step 5: Draw the compensated frequency response, check PM sysD=tf([4.622 1],[1.0137 1]); sysC=sys*sysD; margin(sysC); step(feedback(sysC,1))

Why this Lead Compensator doesn't work? (I)

Check the poles & zeros of the closed-loop...
syscl=feedback(sysC,1); pzmap(syscl);

Compare with a standard 2nd-order system...
Sys2=tf(0.3099, conv([1 0.384-0.403i], [1 0.384+0.403i]));

Lead Compensator Design Procedure (V)

Step 6: Iterate on the design until all specifications are met sysD=tf([9.7457 1],[1.0911 1]); sysC=sys*sysD; margin(sysC); sysCL=feedback(sysC,1); step(sysCL) sysD=tf([9 1],[1 1]); sysCL=feedback(sys*sysD,1); step(sysCL)

$$\alpha = \frac{1 - \sin \beta_{\max}}{1 + \sin \beta_{\max}} = \frac{1 - \sin 53}{1 + \sin 53} = 0.112$$
$$T = \frac{1}{\omega_{\max} \sqrt{\alpha}} = \frac{1}{(\omega_n / 1.5)\sqrt{\alpha}} = \frac{3}{0.92\sqrt{\alpha}} = 9.7457$$
$$D(s) = \frac{9.7457 \ s + 1}{1.0911 \ s + 1}$$

9/9/2011

9/9/2011

4.1 What's B&B System?

- System: A ball rolls along the track of a beam that is pivoted at some position.
 - **Objective:** To steadily place the ball at any given position along the track
- Strategy: To control the track angle through the control of a servo motor

9/9/2011

4.2 Why focus on B&B System?

- The ball and beam apparatus demonstrates the control problems associated with **unstable systems**.
- An example of such a system is a missile during launch; active control is required to prevent the missile going unstable and toppling over.

4.4 AUE Beam and Ball System

Implement at least one control method 5-10% overshoot and 3-6 second settling time The potentiometer and axle

4.4.1 Modelling the AUE B&B System

Block diagram of stepping motor and load

Lagrangian modelling technique

$$\frac{r(s)}{\theta(s)} = \frac{m \cdot g}{\left(\frac{J_{ball}}{R^2} + m\right) \cdot s^2}$$

4.4.2 Analysis of the AUE B&B

From the nyquist plot, it can be Observed that the system is unstable since -1 is encircled clockwise by the nyquist plot

The system is unstable if it is exposed to a step input. From this can it be concluded that the system needs some kind of controller. Control

4.4.3 Control Strategy for the B&B System

- Cascade control
 - Master loop (outer loop)
 - Slave loop (inner loop)

4.4.4 Control Design for Slave Loop

- The block "control" contains the *P*-controller, *Kp2*.
- The slave loop must be faster enough (e.g., 10 times faster) comparing with the master loop

4.4.5 Control Design for Master Loop

4.4.6 Simulation Tests

4.4.7 Real Test Videos

Classical Control

Exercise

Could you repeat the antenna design using

1. Continuous lead compensation;

2. Emulation method for digital control;

Such that the design specifications:

- Overshoot to a step input less than 5%;
- Settling time to 1% to be less than 14 sec.;
- Tracking error to a ramp input of slope 0.01rad/sec to be less than 0.01rad;
- Sampling time to give at at least 10 samples in a rise time.

(Write your analysis and program on a paper!)

