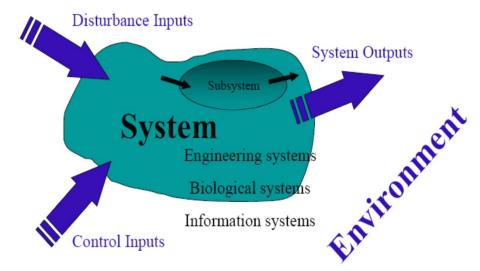
MM2 Essentials for Feedback Control

Readings:

- Section 2.1 (models of mechanical systems, p.20-33);
- Section 3.1 (Laplace transform, p.86-110)
- Section 3.2 (Block diagram, p.111-118)

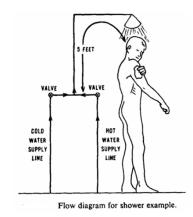
MM1: Basic Concept (I): **System and its Variables**

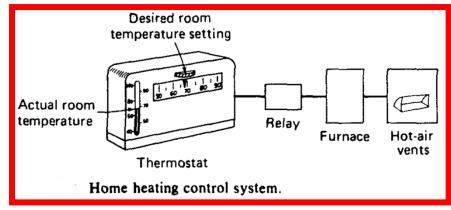
- A **system** is a collection of components which are coordinated together to perform a function
- Systems interact with their **environment**. The interaction is defined in terms of **variables**
 - System inputs
 - System outputs
 - Environmental disturbances
 - **Dynamic system** is a systemehose performance couldchange according to time



MM1: Basic Concept (II): Control

- **Control** is a process of causing a system (output) variable to conform to some desired status/value
- Manual Control is a process where the control is handled by human being(s)
- Automatic Control is a control process which involves machines only

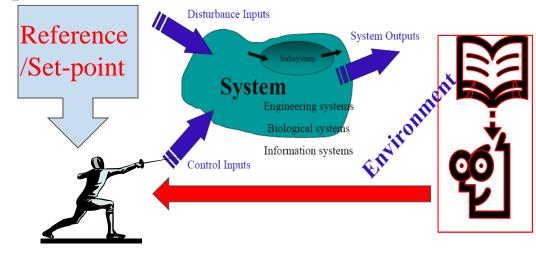




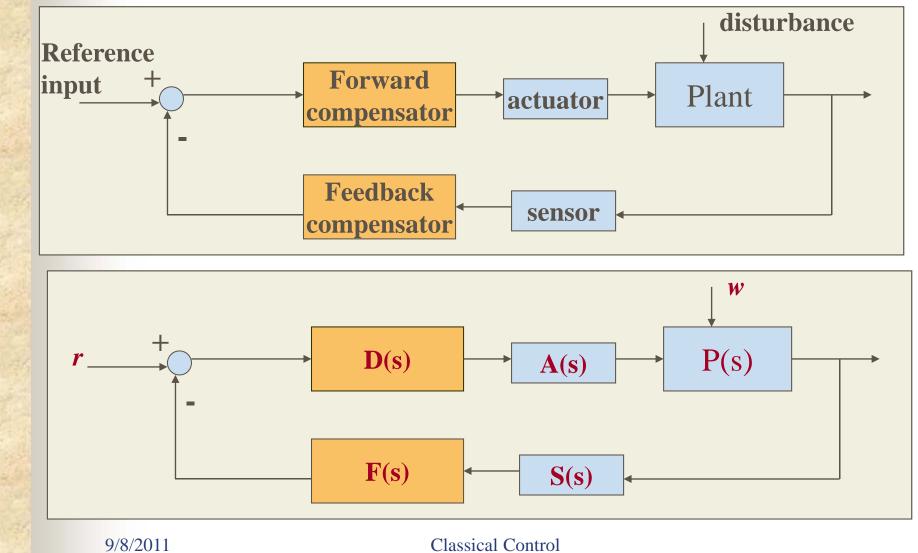
9/8/2011

MM1: Control Classification

- Open-loop Control: A control process which does not utilize the feedback mechanism, i.e., the output(s) has no effect upon the control input(s)
- Closed-loop Control: A control process which utilizes the feedback mechanism, i.e., the output(s) does have effect upon the control input(s)



MM1: Feedback Control – Block Diagrams



MM1: System Model: Transfer Function

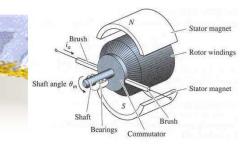
Num-den form sys=tf(num,den)

$$G(s) = \frac{Y(s)}{U(s)} = \frac{b_1 s^m + b_2 s^{m-1} + \dots + b_{m+1}}{a_1 s^n + a_2 s^{n-1} + \dots + b_{n+1}}, \quad e.g., \quad G(s) = \frac{K}{s^2 + 2\zeta\omega + \omega^2}$$

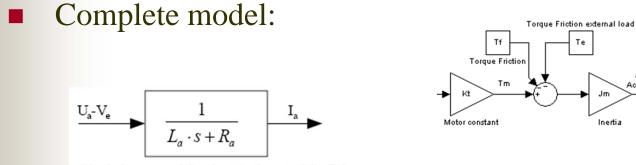
Zero-pole form sys=zpk(Z,P,K)

$$G(s) = \frac{Y(s)}{U(s)} = K \frac{\prod_{i=1}^{m} (s - z_i)}{\prod_{i=1}^{n} (s - p_i)} \quad e.g., \quad G(s) = \frac{K}{(s - p_1)(s - p_2)}$$

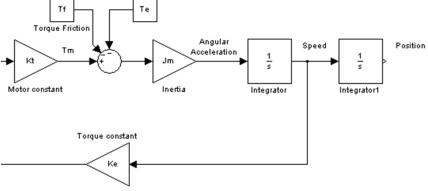
Overview of system features
 ltiview(sys)

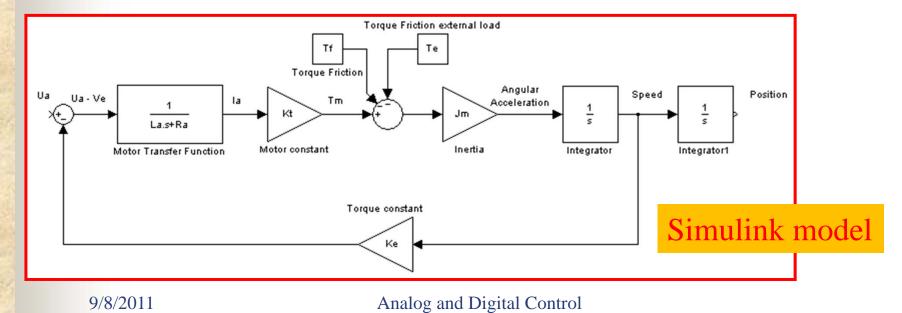


MM1: Modeling: DC-motor



: Block diagram of the electrical part of the DC-motor.





The Goals of this lecture (MM2) ...

- Essentials in using (ordinary) differential equation model
 - Why use ODE model
 - Linear vs. nonlinear ODE models
 - How to solve an ODE
 - Numerical methods (Matlab)
 - Refresh of Laplace transform
 - Key features
 - Transformation from ODE to TF model
- Block diagram transformation
 - Composition /decomposition
 - Signal-flow graph

The Goals of this lecture...

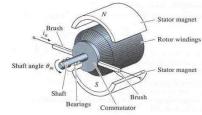
- Essentials in using (ordinary) differential equation model
 - Why use ODE model
 - Linear vs. nonlinear ODE models
 - How to solve an ODE
 - Numerical methods (Matlab)
 - Laplace transform
 - Key features
 - Transformation from ODE to TF model
- Block diagram transformation
 - Composition /decomposition
 - Signal-flow graph

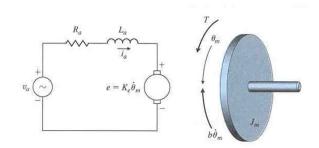
Essentials in ODE - What's an ODE Model (I)?

An ODE model is a set of ODEs that describe the dynamic behavior of the considered system (in terms of system input and output variables – IO Model)

$$L_a \frac{di_a}{dt} + R_a i_a = v_a - K_e \theta_m$$

$$J_m \hat{\theta}_m + b \hat{\theta}_m = K_t i_a - T_e - T_f$$





Variables: input, output, internal

$$J_{m} \ddot{\theta}_{m} + (b + \frac{K_{t}K_{e}}{R_{a}}) \dot{\theta}_{m} = \frac{K_{t}}{R_{a}} v_{a} - T_{e} - T_{f}$$

Essentials in ODE - What's an ODE Model (II)?

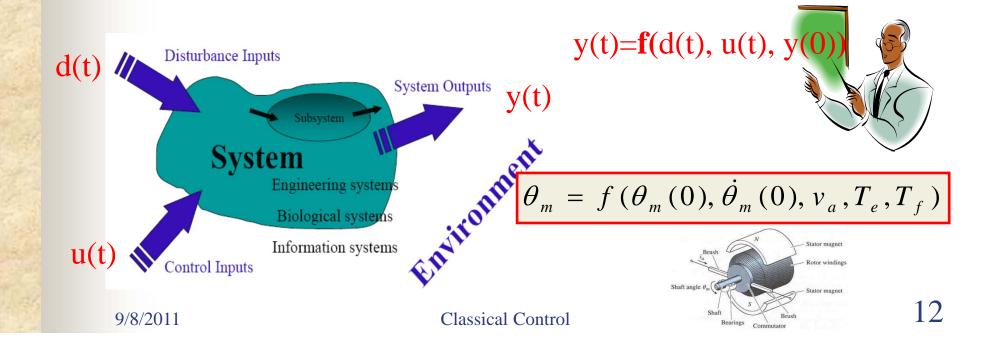
• A general ODE model:

 $a_n \frac{d^n y(t)}{dt^n} + \dots + a_1 \frac{dy(t)}{dt} + a_0 y(t) = b_m \frac{d^m u}{dt^m} + \dots + b_1 \frac{du}{dt} + b_0 u$

- Assumption: n > m
- Single-input single-output (SISO) model
- SIMO, MISO, MIMO models
- Linear system
- Time-invance
- Linear Time-Invarnace (LTI) model

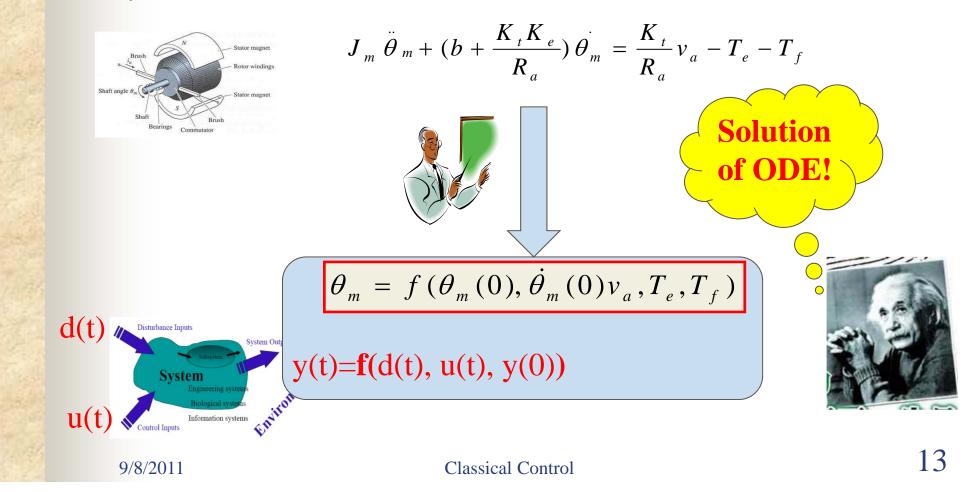
Essentials in ODE – Why Use ODE Model?

- The ODE model can be naturally obtained through modeling procedure by following some physical principles
 Get your feeling of that through Modeling lectures...
- The ODE model is an efficient but impelicit description of the dynamic system's behavior

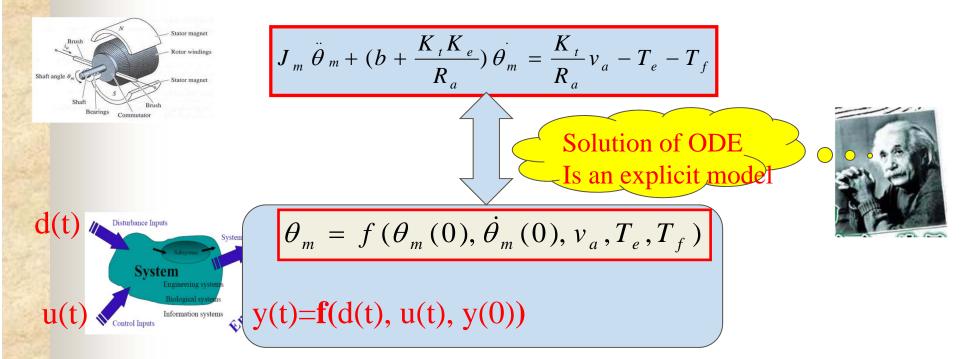


Essentials in ODE –How to interperate ODE Model?

The ODE model is an impelicit description of the dynamic system's behavior

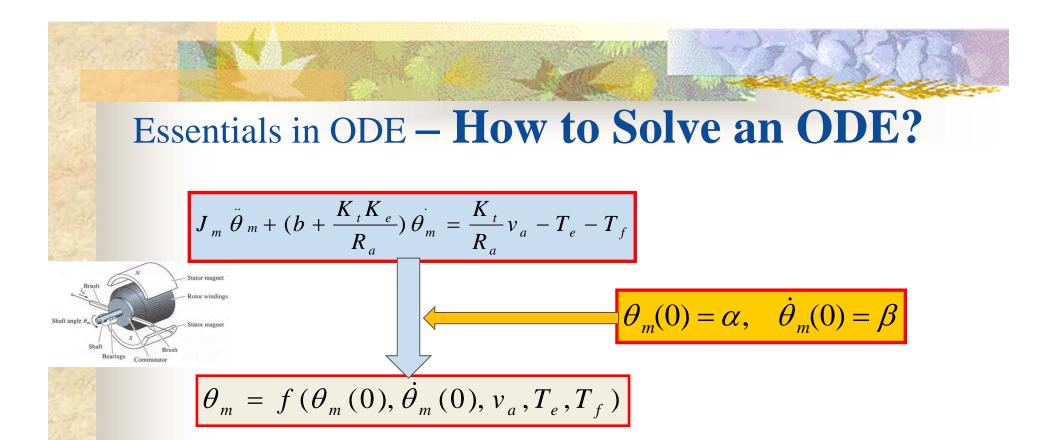


Essentials in ODE – Uniqueness of ODE Solution



Conditions for unique solution of an ODE:

- Initial conditions
- Lipschiz condition



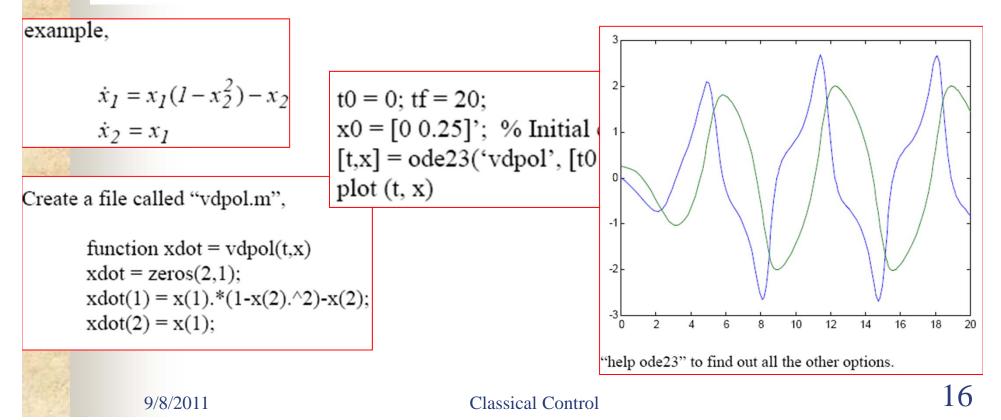
Solving an ODE:

- Time-domain method
- Complex-domain method (Laplace transform)
- Numerical solution CAD methods

Essentials in ODE – ODE Solvers in Matlab

Differential Equation Solver

MATLAB's functions for solving ordinary differential equations are ode23 – 2nd/3rd order Runge-Kutta method ode45 – 4th/5th order Runge-Kutta method



The Goals of this lecture...

- Essentials in using (ordinary) differential equation model
 - Why use ODE model
 - Linear vs. nonlinear ODE models
 - How to solve an ODE
 - Numerical methods (Matlab)
 - **Refresh of Laplace transform**
 - **Key features**
 - **Transformation from ODE to TF model**
- Block diagram transformation
 - Composition /decomposition
 - Signal-flow graph

Laplace Transform - **Definition**

Time function

$$\begin{array}{l} \text{Transform} \\ \leftrightarrow \end{array} \quad \text{Complex function} \\ (f(t) \leftrightarrow F(s), \text{ where } s = \sigma + j\omega, \, j = \sqrt{-1}) \end{array}$$

Definitions:

• Laplace transform:

$$\mathcal{L}[f(t)] = \int_{0-}^{\infty} f(t)e^{-st} dt = F(s)$$

 \bullet Inverse Laplace transform:

$$\mathcal{L}^{-1}[F(s)] = \frac{1}{2\pi j} \int_{\sigma-j\infty}^{\sigma+j\infty} F(s) e^{st} \, ds = f(t)$$

Classical Control

Laplace Transform – **Basic Pairs**

Time function $f(t)$	Laplace transform $F(s)$
$\delta(t)$, unit impulse	1
1, unit step	$\frac{1}{s}$
t	$\frac{1}{s^2}$
e^{-at}	$\frac{1}{s+a}$
$\sin \omega t$	$rac{\omega}{s^2+\omega^2}$

Laplace Transform - **Properties**

(a)
$$\mathcal{L}[\alpha f(t) + \beta g(t)] = \alpha F(s) + \beta G(s)$$

(b) $\mathcal{L}^{-1}[\alpha F(s) + \beta G(s)] = \alpha f(t) + \beta g(t)$
(c) $\mathcal{L}[\frac{df(t)}{dt}] = sF(s) - f(0_{-})$
(d) $\mathcal{L}[f_{-\infty}^{t} f(t) dt] = \frac{F(s)}{s} + \frac{1}{s} \int_{-\infty}^{0} f(t) dt$
(e) $\mathcal{L}[e^{-at} f(t)] = F(s + a)$
(f) $\lim_{t \to \infty} f(t) = \lim_{s \to 0} sF(s)$

9/8/2011

Classical Control

Laplace Transform – **ODE**

$$a_{n} \frac{d^{n}y(t)}{dt^{n}} + \dots + a_{1} \frac{dy(t)}{dt} + a_{0} y(t) = b_{m} \frac{d^{m}u}{dt^{m}} + \dots + b_{1} \frac{du}{dt} + b_{0} u$$

$$(a_{n}s^{n} + \dots + a_{1}s + a_{0})Y(s) = (b_{m}s^{m} + \dots + b_{1}s + b_{0})U(s)$$

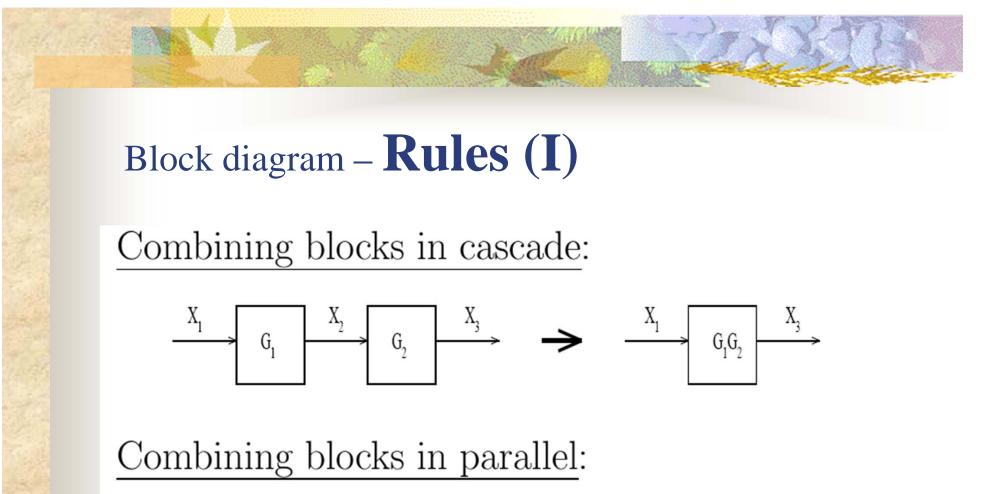
$$u$$

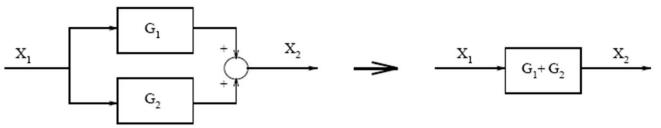
$$G(s) = \frac{Y(s)}{U(s)} = \frac{b_{m}s^{m} + \dots + b_{1}s + b_{0}}{a_{n}s^{n} + \dots + a_{1}s + a_{0}}$$

$$\mathcal{L}[\frac{d^{k}f(t)}{dt^{k}}] = s^{k}F(s) - s^{k-1}f(0_{-}) - \dots - sf^{(k-2)}(0_{-}) - f^{(k-1)}(0_{-})$$
28/2011 Classical Control

The Goals of this lecture...

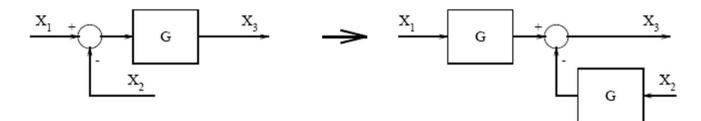
- Essentials in using (ordinary) differential equation model
 - Why use ODE model
 - Linear vs. nonlinear ODE models
 - How to solve an ODE
 - Numerical methods (Matlab)
 - Refresh of Laplace transform
 - Key features
 - Transformation from ODE to TF model
- Block diagram transformation
 - Composition /decomposition
 - Signal-flow graph



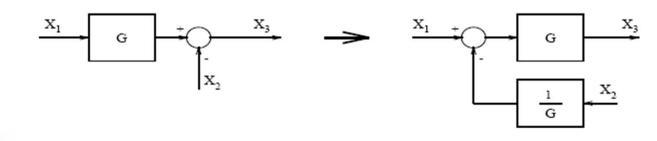


Block diagram – Rules (II)

Moving a summing point forward:



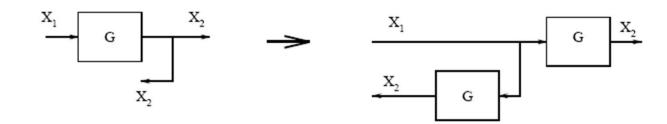
Moving a summing point backward:



Block diagram – Rules (III)

Moving a pickoff point forward:

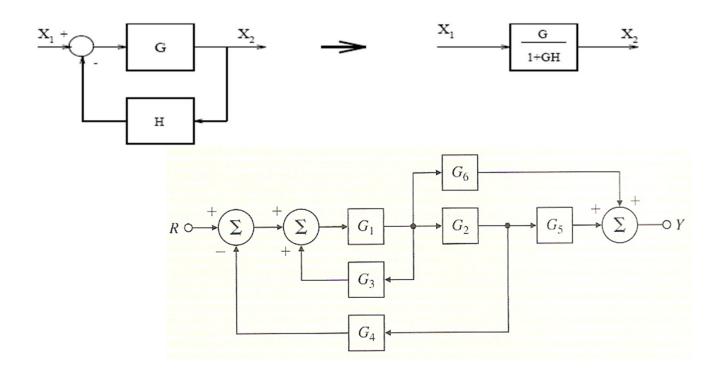
Moving a pickoff point backward:



Classical Control

Block diagram – Rules (IV)

Eliminating a feedback loop:



Block diagram – **Example** G_6 2 G_2 G_5 $R \circ$ Σ G_1 + G_3 G_4 $\frac{Y(s)}{R(s)} = \frac{G_1 G_2 G_5 + G_1 G_6}{1 - G_1 G_3 + G_1 G_2 G_4}$ 9/8/2011

The Goals of this lecture...

- **E**ssentials in using (ordinary) differential equation model
 - Why use ODE model
 - Linear vs. nonlinear ODE models
 - How to solve an ODE
 - Numerical methods (Matlab)
 - **Refresh of Laplace transform**
 - **Key features**
 - **Transformation from ODE to TF model**
- Block diagram transformation
 - **Composition /decomposition**
 - Signal-flow graph

Execise Two

See the distributed paper

