MM3 Response of Dynamic Systems Readings:

- Section 3.3 (response & pole locations, p.118-126);
- Section 3.4 (time-domain specifications, p.126-131)
- •Section 3.6 (numerical simulation, p.138-143)

What have we talked in MM2?

- ODE models
- Laplace transform
- Block diagram transformation

MM2: ODE Model

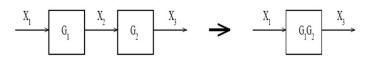
Self - Contraction

• A general ODE model: $a_n \frac{d^n y(t)}{dt^n} + \dots + a_1 \frac{dy(t)}{dt} + a_0 y(t) = b_m \frac{d^m u}{dt^m} + \dots + b_1 \frac{du}{dt} + b_0 u$

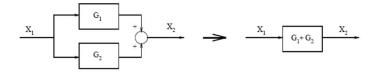
- **SISO, SIMO, MISO, MIMO** models
- Linear system, Time-invance, Linear Time-Invarance (LTI)
- Solution of ODE is an explicit description of dynamic behavior
- Conditions for unique solution of an ODE
- Solving an ODE:
 - Time-domain method, e.g., using exponential function
 - Complex-domain method (Laplace transform)
 - Numerical solution CAD methods, e.g., ode23/ode45

MM2: Block diagram Rules

Combining blocks in cascade:



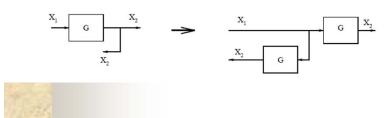
Combining blocks in parallel:



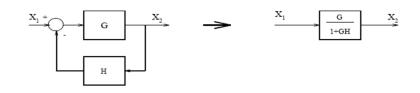
Moving a pickoff point forward:

Moving a pickoff point backward:

9/8/2011

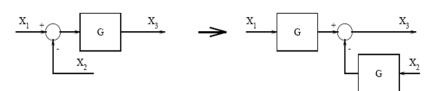


Eliminating a feedback loop:



Moving a summing point backward:

Moving a summing point forward:



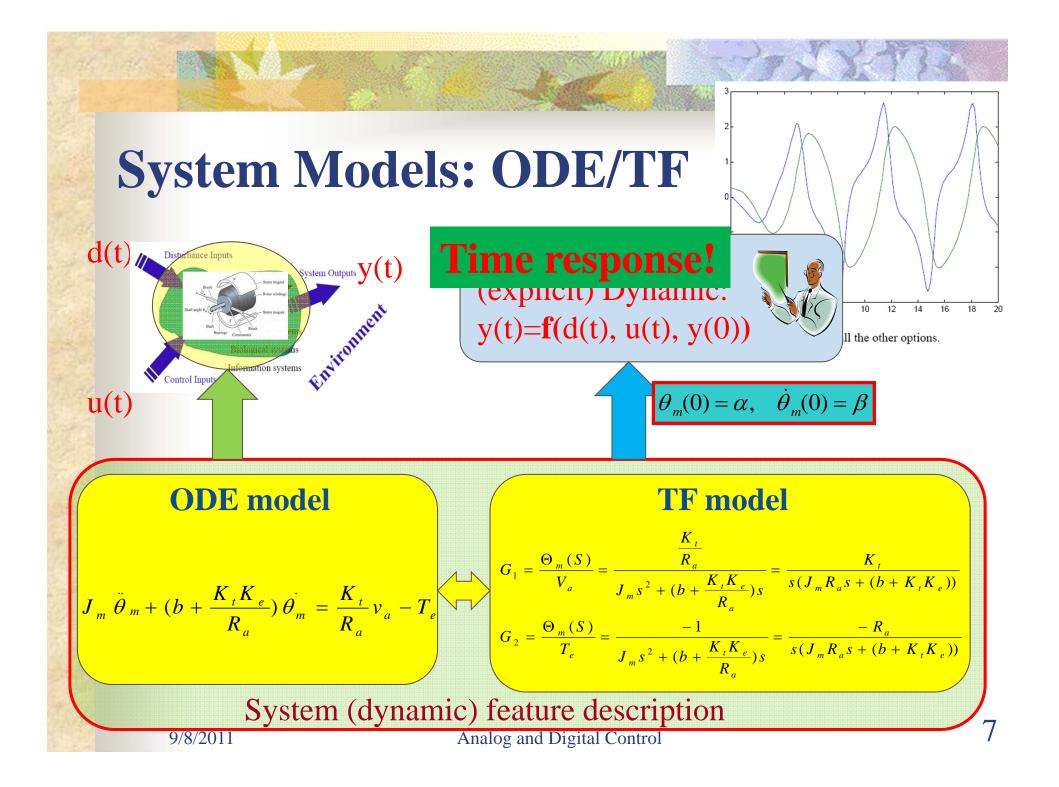
Classical Control

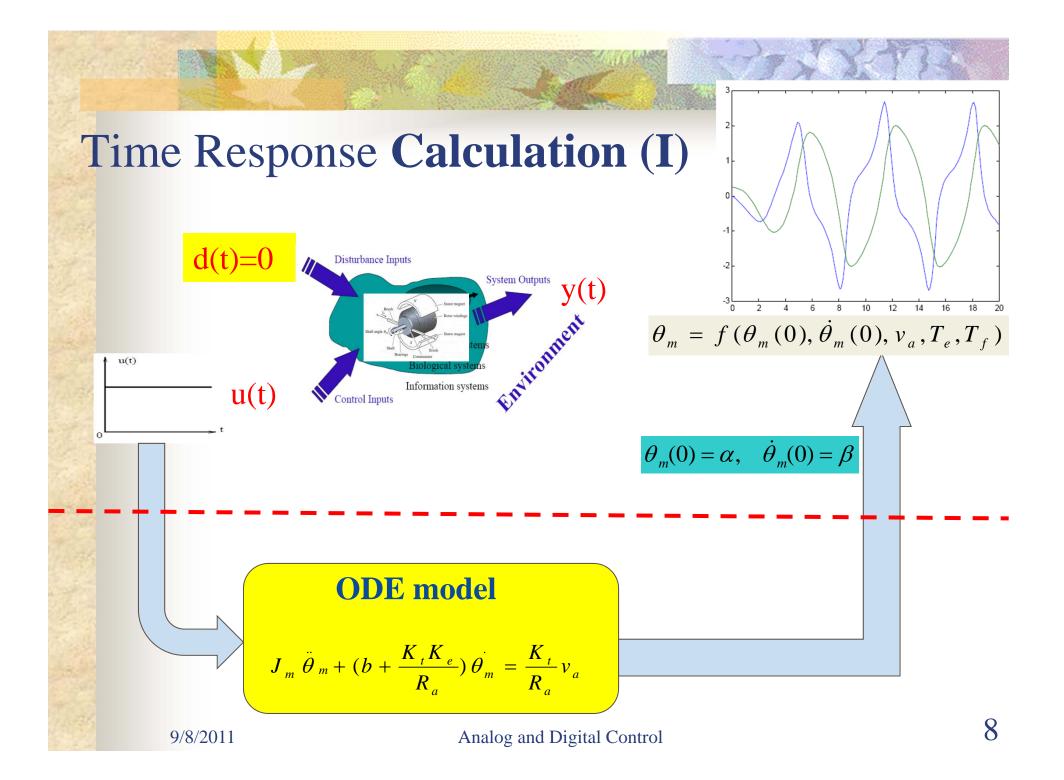
MM2: Simulink Block diagram

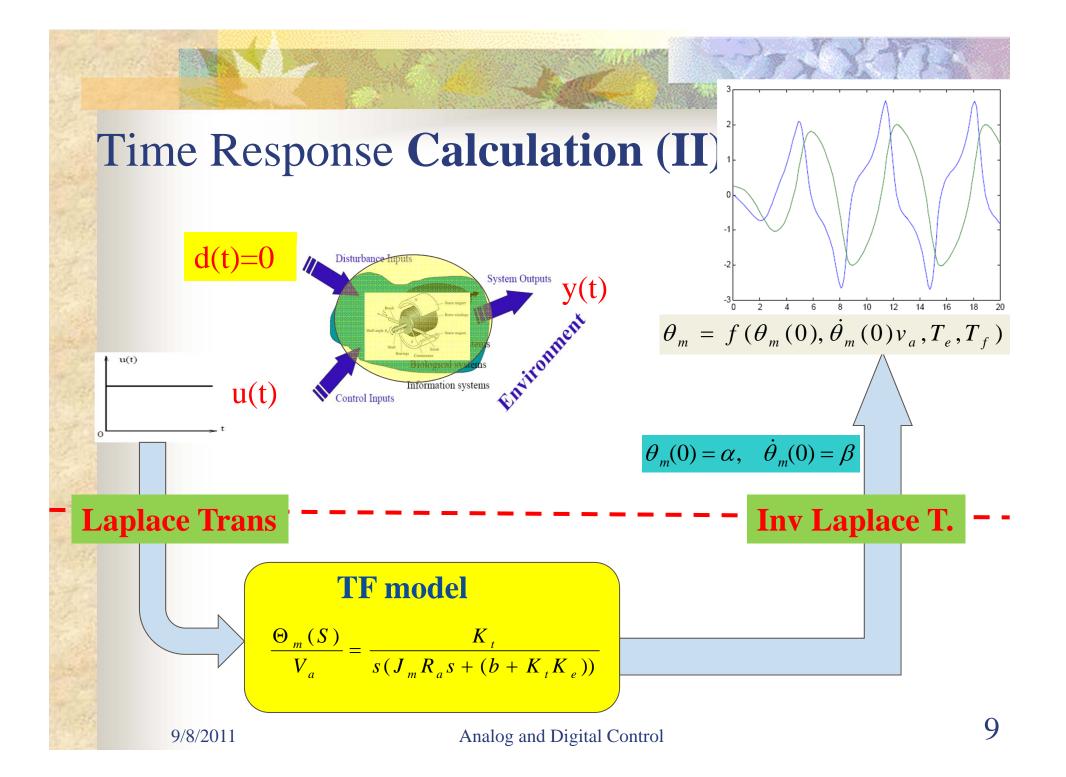
- System build-up
 - Using TF block
 - Using nonlinear blocks
 - Using math blocks
- Creat subsystems
 - Top-down
 - Bottom-up
- Usage of ode23 & ode45

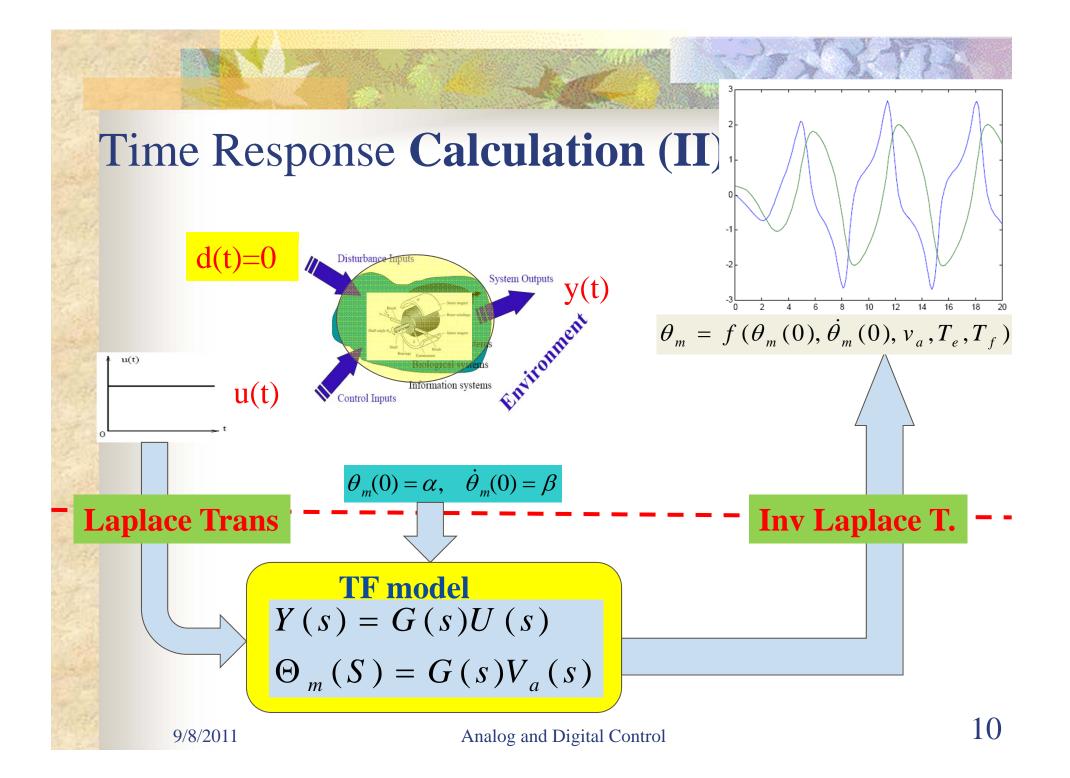
Goals for this lecture (MM3)

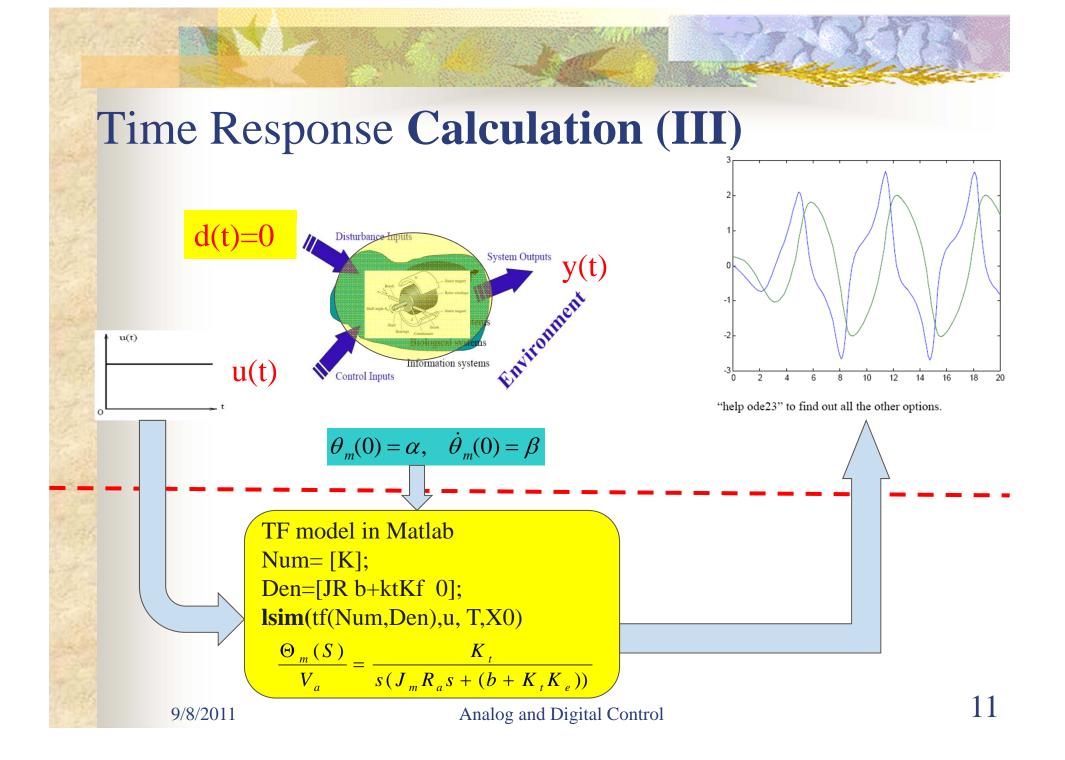
- Time response analysis
 - Typical inputs
 - 1st, 2nd and higher order systems
- Performance specification of time response
 - Transient performance
 - Steady-state performance
- Numerical simulation of time response











Time Response Analysis

Objective:

Based on TF model, Can we predict some **key features** of a dynamic response regarding to some **typical input**, without detail calculation of the solution?

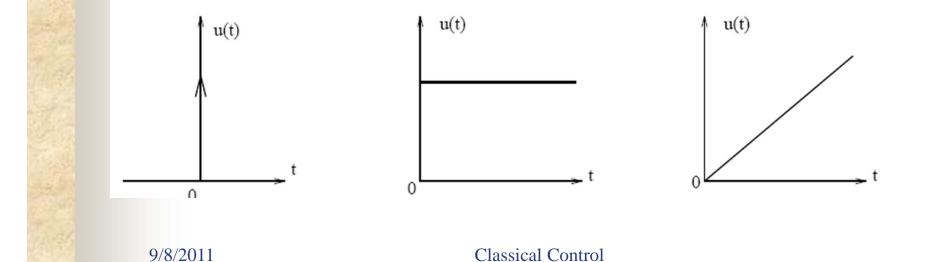
In another word, to get a rough sketch of the dynamic with all key (concerned) features kept

- Typical inputs
- Corresponding responses
- Key features

Time Response Analysis – Typical Inputs

- Supercomposition principle
- LTI system
- Typical representations

Test signal	u(t)	U(s)
Impulse	$\delta(t)$	1
Step	1	1/s
Ramp	t	$1/s^{2}$



Time Response Analysis – Impulse Signal

- Impulse signal
 - **Features**
 - Convolution integration

Approximation

Impulse
$$\delta(t) \mid 1$$

$$\int_{0^{-}}^{\infty} \delta(t) dt = 1$$
$$f(t) = \int_{-\infty}^{\infty} f(\tau) \delta(t - \tau) d\tau = f(t) * \delta(t)$$

Approximation of impulse by a rectangular function

u(t)

Classical Control

e 0⁺

$$\Delta_{\varepsilon}(t) = \begin{cases} 1/\varepsilon, & 0 \le t \le \varepsilon \\ 0, & \text{otherwise} \end{cases}$$

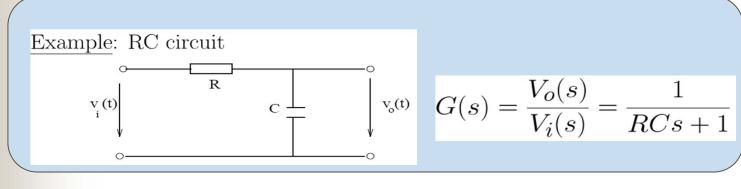
 $1/\epsilon$

where $\varepsilon > 0$ is sufficiently small

9/8/2011

Time Response – First-order System (I)

First-order system **Examples:** (mm2) Motor speed control Cruise control RC cuircuit One-tank level control $g(t) = ke^{-pt}$ or $g(t) = \frac{c}{\tau}e^{-\frac{1}{\tau}t}$



9/8/2011

Classical Control

Time Response – First-order System (II)

$$\frac{dy}{dt} + py = ku$$

$$(s + p)Y(s) = kU(s) + y(0_{-})$$

$$\Rightarrow Y(s) = \frac{k}{s+p}U(s) + \frac{y(0_{-})}{s+p}$$

$$\frac{\text{Time response:}}{y(t) = \mathcal{L}^{-1}[Y(s)] = \mathcal{L}^{-1}[G(s)U(s)] + y(0_{-})e^{-pt}$$

$$\frac{\text{Separation:}}{\text{Time response}}$$

$$\frac{\text{Time response}}{\text{Time response}} = \frac{\text{Excitation}}{\text{response}} + \frac{\text{Initial condition}}{\text{response}}$$
9/8/2011

First-order System - Impulse Response

Time response: $y(t) = \mathcal{L}^{-1}[Y(s)] = \mathcal{L}^{-1}[G(s)U(s)] + y(0_{-})e^{-pt}$ Plotting (p > 0): Input signal: $u(t) = \delta(t) \leftrightarrow U(s) = 1$ y(t)Impulse response: $y(t) = \mathcal{L}^{-1}\left[\frac{k}{s+p}\right] = ke^{-pt}$ t 0 The coefficients of • Initial-condition response $y(0_{-})e^{-pt}$ impulse response can be • Impulse response ke^{-pt} estimated by free-response

<u>Conclusion</u>: Impulse response & initial-condition response are the same type

9/8/2011

Classical Control

First-order System - Step Response

Time response:

$$y(t) = \mathcal{L}^{-1}[Y(s)] = \mathcal{L}^{-1}[G(s)U(s)] + y(0_{-})e^{-pt}$$

Input signal: $u(t) = 1 \leftrightarrow U(s) = 1/s$

$$y(t) = \mathcal{L}^{-1}\left[\frac{k}{s(s+p)}\right] = \mathcal{L}^{-1}\left[\frac{k/p}{s} - \frac{k/p}{s+p}\right] = \frac{k}{p} - \frac{k}{p}e^{-pt}$$

To follow the step input, a controller of the constant gain p/k is needed

First-order System - Ramp Response

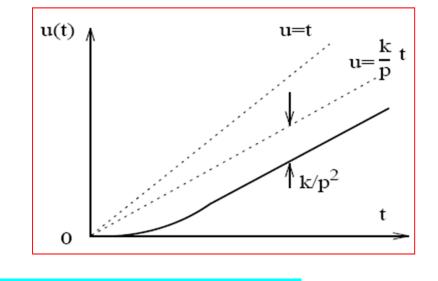
Time response:

$$y(t) = \mathcal{L}^{-1}[Y(s)] = \mathcal{L}^{-1}[G(s)U(s)] + y(0_{-})e^{-pt}$$

<u>Input signal</u>: $u(t) = t \leftrightarrow U(s) = 1/s^2$

$$\begin{split} y(t) &= \mathcal{L}^{-1} [\frac{k}{s^2(s+p)}] \\ &= \mathcal{L}^{-1} [\frac{k/p}{s^2} - \frac{k/p^2}{s} + \frac{k/p^2}{s+p}] \\ &= \frac{k}{p} t - \frac{k}{p^2} + \frac{k}{p^2} e^{-pt} \\ &= \frac{k}{p} t - \frac{k}{p^2} (1-e^{-pt}) \end{split}$$

$$\begin{aligned} & = \frac{9/8}{2011} \end{split}$$



Type of systems (mm4) Classical Control

Time Response – Second-order System (I)

Second-order system

$$G(s) = \frac{\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2}.$$

• ξ – damping ratio, a dimensionless factor

• ω_n – natural frequency with unit rad/s

Kirchoff's law: $i_R + i_L + i_C = i_s \Rightarrow$ Integro-differential equation

R

$$\frac{v(t)}{R} + C \frac{dv(t)}{dt} + \frac{1}{L} \int_0^t v(t) \, dt = u(t)$$

L

v(t) - voltage of C

Current

source

u(t)

$$LC \frac{d^2 i(t)}{dt^2} + \frac{L}{R} \frac{di(t)}{dt} + i(t) = u(t)$$
$$i(t) = \frac{1}{L} \int_0^t v(t) \, dt - \text{current of } L$$

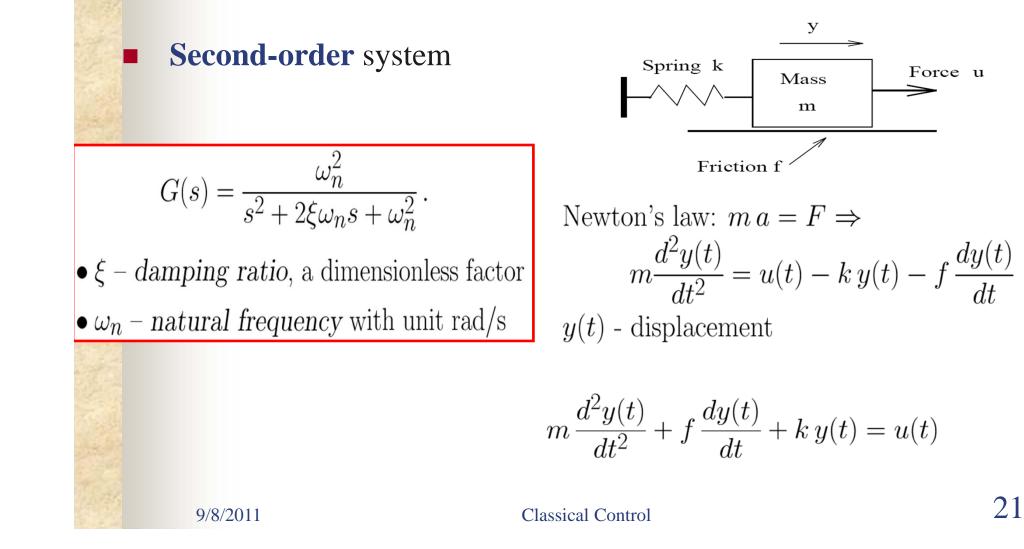
9/8/2011

Classical Control

_____ v(t)

С

Time Response – Second-order System (II)



Second-order system

$$G(s) = \frac{\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2}.$$

• ξ – damping ratio, a dimensionless factor

•
$$\omega_n$$
 – natural frequency with unit rad/s

Check execise one

Model analysis)

for MM2 – pendulum

Roots of
$$s^2 + 2\xi\omega_n s + \omega_n^2 = 0$$

• Case 1 (
$$\xi = 1$$
): Two repeated roots $s_{1,2} = -\omega_n$

• Case 2 (
$$\xi < 1$$
): A complex conjugate root
pair $s_{1,2} = -\xi \omega_n \pm j \omega_n \sqrt{1 - \xi^2}$

• Case 3 (
$$\xi > 1$$
): Two distinct roots $s_{1,2} = -\omega_n(\xi \pm \sqrt{\xi^2 - 1})$
9/8/2011 Classical Control

Second-order System – Impulse Response

Input signal: $u(t) = \delta(t) \leftrightarrow U(s) = 1$

<u>Impulse response</u>: For $\xi < 1$,

$$y(t) = \mathcal{L}^{-1}[G(s)]$$

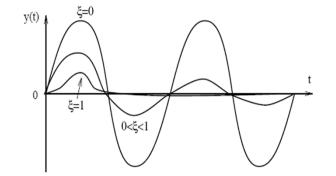
= $\mathcal{L}^{-1}\left[\frac{\omega_n^2}{(s+\xi\omega_n)^2 + \omega_d^2}\right]$
= $\frac{\omega_n}{\sqrt{1-\xi^2}}e^{-\xi\omega_n t}\sin\omega_d t$

where $\omega_d = \omega_n \sqrt{1 - \xi^2}$, and for $\xi = 1$

$$y(t) = \mathcal{L}^{-1} \left[\frac{\omega_n^2}{(s + \omega_n)^2} \right]$$
$$= \omega_n^2 e^{-\omega_n t} t$$

$$G(s) = \frac{\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2}$$

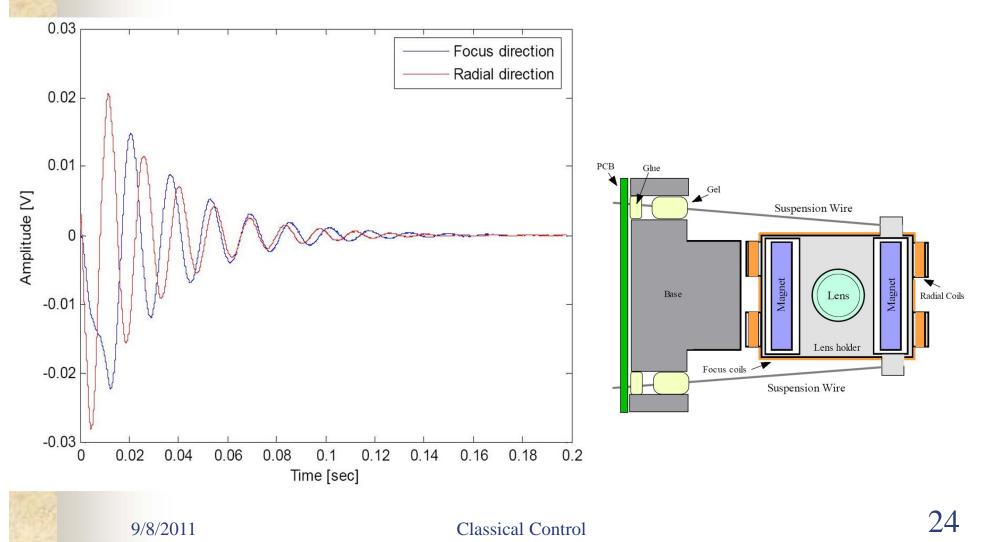
<u>Plotting</u>: For the cases $\xi = 0$, $\xi = 1$ and $0 < \xi < 1$.



The coefficients of
impulse response can be
estimated by free-response23

9/8/2011

Example: Impulse Response Estimation

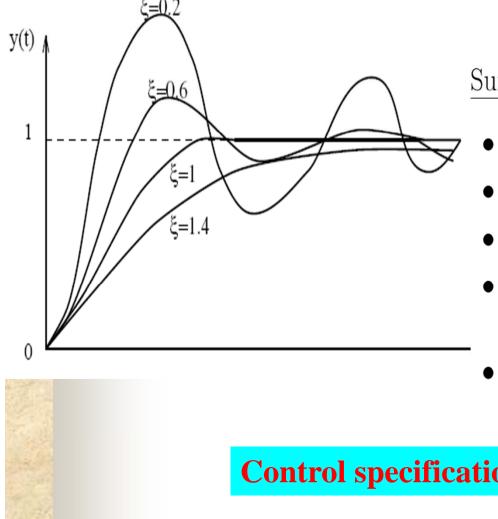


Second-order System – Step Response (I)

Sugar States

Input signal: $u(t) = 1 \leftrightarrow U(s) = 1/s$ <u>Remark</u>: Let $c = \sqrt{a^2 + b^2}$, $\alpha = \tan^{-1} \frac{a}{b}$, then <u>Case 1</u>: $\xi < 1$ $a\cos\beta + b\sin\beta = c(\frac{a}{c}\cos\beta + \frac{b}{c}\sin\beta)$ $Y(s) = \frac{G(s)}{s} = \frac{\omega_n^2}{s(s^2 + 2\xi\omega_n s + \omega_n^2)}$ $= c(\sin\alpha\cos\beta + \cos\alpha\sin\beta) = c\sin(\alpha + \beta)$ $=\frac{1}{s}-\frac{s+2\xi\omega_n}{s^2+2\xi\omega_ns+\omega_n^2}$ <u>Case 2</u>: $\xi = 1$ $Y(s) = \frac{1}{s} - \frac{1}{s + \omega_n} - \frac{\omega_n}{(s + \omega_n)^2},$ $=\frac{1}{s}-\frac{s+\xi\omega_n}{(s+\xi\omega_n)^2+\omega_d^2}-\frac{\xi\omega_n}{(s+\xi\omega_n)^2+\omega_d^2}$ <u>Inverse</u> Laplace transform \Rightarrow Inverse Laplace transform \Rightarrow $y(t) = 1 - e^{-\omega_n t} (1 + \omega_n t)$ $y(t) = 1 - e^{-\xi\omega_n t} \cos \omega_d t - \frac{\xi}{\sqrt{1-\xi^2}} e^{-\xi\omega_n t} \sin \omega_d t$ Plotting: $= 1 - \frac{e^{-\xi\omega_n t}}{\sqrt{1 - \xi^2}} \sin(\omega_d t + \phi)$ y(t) ξ=0.6 with $\phi = \tan^{-1} \frac{\sqrt{1-\xi^2}}{\xi}, \ \omega_d = \omega \sqrt{1-\xi^2}.$ ξ=1.4 25 9/8/2011 Classi

Second-order System – Step Response (II)



Summary: The response

• converges to 1 due to $e^{-\xi\omega_n}$;

- oscillates at frequency ω_d if $0 < \xi < 1$;
- has no oscillation if $\xi \geq 1$;
- possesses larger amplitude of the initial response period for smaller ξ ;
- equals $y(t) = 1 \cos \omega_n t$ for the extreme case: $\xi = 0$

Control specification!

9/8/2011

Second-order System – Ramp Response

$$Y(s) = \frac{G(s)}{s^2} = \frac{\omega_n^2}{s^2(s^2 + 2\xi\omega_n s + \omega_n^2)}$$

= $\frac{1}{s^2} - \frac{2\xi/\omega_n}{s} + \frac{\frac{2\xi}{\omega_n}s + 4\xi^2 - 1}{s^2 + 2\xi\omega_n s + \omega_n^2}$
= $\frac{1}{s^2} - \frac{2\xi/\omega_n}{s} + \frac{2\xi}{\omega_n} \left(\frac{s + \xi\omega_n}{s^2 + 2\xi\omega_n s + \omega_n^2} + \frac{\frac{2\xi^2 - 1}{2\xi}\omega_n}{s^2 + 2\xi\omega_n s + \omega_n^2}\right)$

Inverse Laplace transform \Rightarrow

$$\begin{split} y(t) &= t - \frac{2\xi}{\omega_n} + \frac{2\xi}{\omega_n} e^{-\xi\omega_n t} \left(\cos\omega_d t + \frac{2\xi^2 - 1}{2\xi\sqrt{1 - \xi^2}} \sin\omega_d t\right) \\ &= t - \frac{2\xi}{\omega_n} + \frac{e^{-\xi\omega_n t}}{w_d} \sin(\omega_d t + \phi) \end{split}$$

with $\phi = \tan^{-1} \frac{2\xi \sqrt{1-\xi^2}}{2\xi^2 - 1}, \ \omega_d = \omega_n \sqrt{1-\xi^2}$

Plotting:



<u>Conclusion</u>: 2nd-order system can follow a ramp input but with a fixed difference $\frac{2\xi}{\omega_n}$

ical Control

Second-order System – Damping Effect

$$G(s) = \frac{\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2}$$

Case	Description	Roots
$\xi = 0$	Undampted	$s_{1,2} = \pm j\omega$
$\xi < 1$	Underdampted	$s_{1,2} = -\sigma \pm j\omega$
$\xi = 1$	Critically damped	$s_1 = s_2 = -\sigma$
$\xi > 1$	Overdamped	$s_1 = -\sigma_1, s_2 = -\sigma_2$

STAL Y

Time Response – High-Order System

<u>Fact</u>: Time response of a higher-order system '=' combination of times responses of 1st- & 2nd-order systems

<u>Method</u>: Partial fraction + inverse Laplace transform

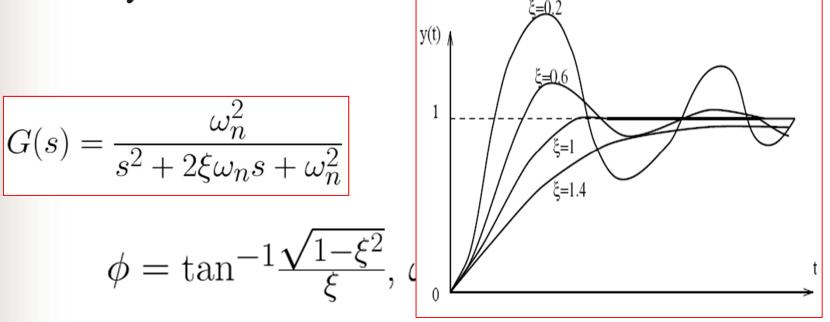
See page 32-37 of the extra readings for detail explanation

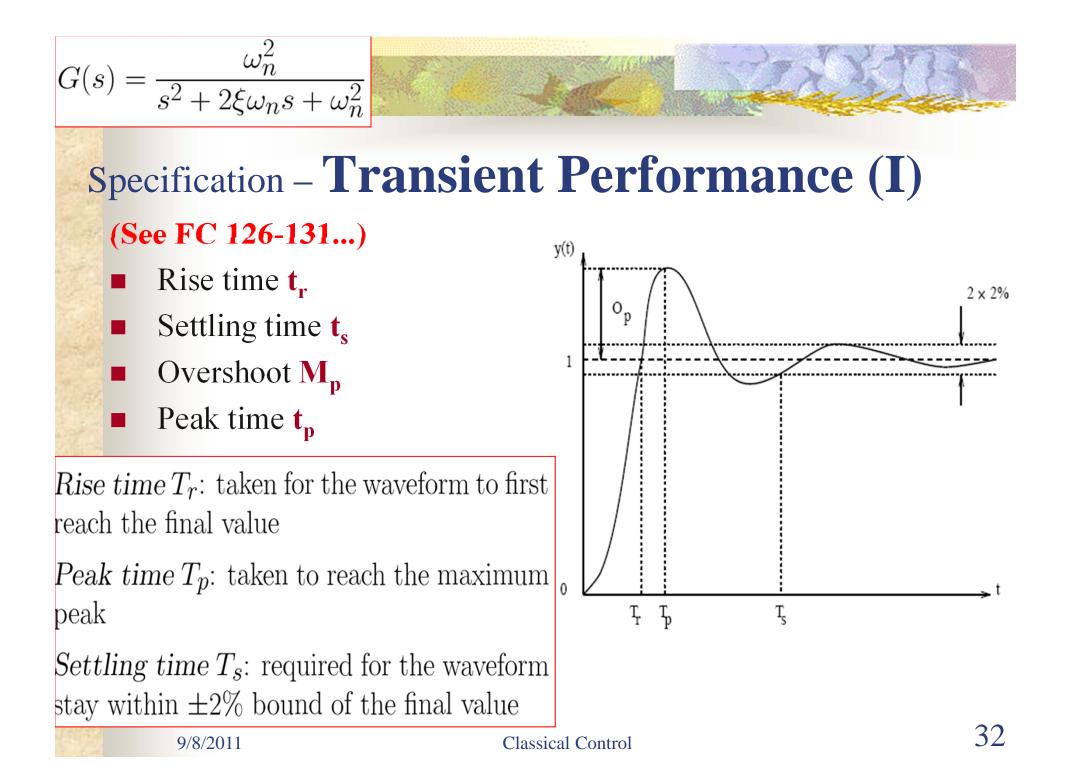
Goals for this lecture (MM3)

- Time response analysis
 - Typical inputs
 - 1st, 2nd and higher order systems
- Performance specification of time response
 - Transient performance
 - Steady-state performance
- Numerical simulation of time response

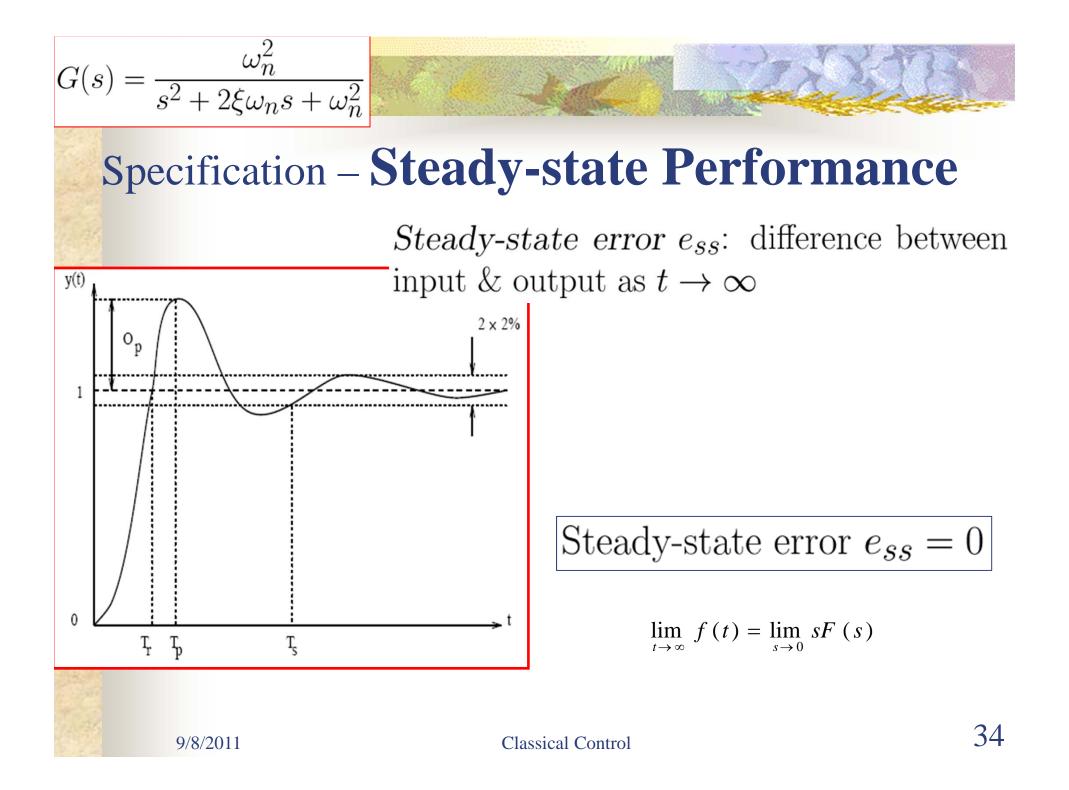
Performance Specification

Objective: evaluation of control design
 Platform: based on step response of a typical 2nd-order system





$$G(s) = \frac{\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2}$$
Specification – Transient Performance (II)
$$\int_{1}^{\sqrt{0}} \frac{1}{\sqrt{1-\xi^2}} \int_{1}^{2\times 2^k} \frac{1}{\sqrt{1-\xi^2}} \int_{1}^{2} \frac{1}{\sqrt{1-\xi^2}} \int_{1}^{$$



Goals for this lecture (MM3)

- Time response analysis
 - Typical inputs
 - 1st, 2nd and higher order systems
- Performance specification of time response
 - Transient performance
 - Steady-state performance

Numerical simulation of time response

Numerical Simulation of Time Response

- Impulse response: impulse(sys)
- Step response: step(sys)
- Itiview(sys)
- Decomposition of transfer function to be a configuration based on integor and gain elements (in order to simulate initial response in simulink)

EXAMPLE:

sys1: Sys2: num1=[1]; num2=[1 2]; den1=[1 2 1]; den2=[1 2 3]; impulse(tf(num1,den1),'r',tf(num2,den2),'b') step(tf(num1,den1),'r',tf(num2,den2),'b')

