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MM5 Stability Analysis

Readings: 
• Section 4.4 (stability, p.212-223);
• Section 4.3 (steady-state tracking & system type, p.200-210)
• Section 3.5 (effects of zeros & add. Poles, p.131-138)
• Extra reading materials (p.40-60)



What have we talked in MM4?

• Poles vs time reponses
• Feedback charactersitics
•Matlab: pzmap(), sgrid 
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MM4 : Poles vs Performance 
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Pole locations Time response



MM4: First-order System
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Time constant – why?

63%

Time response is determined by the time constant
System pole is the negative of inverse time constant 
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MM4: Second-Order System
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MM4: Summary of Pole vs Performance
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MM4: Plot of Pole Locations 

s1=tf(1,[1 2 1]); 
s2=tf(1,[1 1.6 1]);
s3=tf(1,[1 1.0 1]);
s4=tf(1,[1 0 1]);
pzmap(s1,s2,s3,s4)
sgrid
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Goals for this lecture (MM5)

 Stability analysis 
 Definition of BIBO
 Pole locations
 Routh criteron

 Steady-state errors
 Final Theorem  
 DC-Gain 
 Stead-state errors

 Effects of zeros and additional poles
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MM4: Summary of Pole vs Performance
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How about if these are 
not satisfied?
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System Stability 
 Definitions
 BIBO stability
 Internal stability
 ...

 Determination methods: 

 Impulse response function/sequence
 Roots of characteristic equation (poles)
 Routh’s stability criterion
 Gain and phase margins
 Nyquist stability criterion



BIBO Stability
 A system is said to have bounded input-bounded output 

(BIBO) stability if every bounded input results in a bounded 
output (regardless of what goes on inside the system)

 The continuous (LTI) system with impuse response h(t) is 
BIBO stable if and only if h(t) is absolutely integrallable

 All system poles locate in the left half s-plane
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 Characteristic equation 

 All poles (roots of the chracteristic equation) of the continuous 
system are strictly in the LHP of the s-plane - asymptotic 
internal stability  

 (Matlab: roots(den))

BIBO Stability – Characteristic Equation
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BIBO Stability – Execise (I)

 Are these systems 
BIBO stable? 

 Intuitive explanation 
 Theoretical analysis 
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 Motivation: Testing stability without calculating poles
 Criterion: For a stable system, there is no changes in sign and 

no zeros in the first column of the Routh array.

BIBO Stability – Routh Criterion (I)
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BIBO Stability – Routh Criterion (II)
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BIBO Stability – Examples 

See  page 46-49 on the extra readings



BIBO Stability – Execise (II)
 How about the stability of your project systems?
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BIBO Stability – Objectives of Control

Performance:   
• time domain specifications
• Frequency specifications
• Dynamic transient responses 
• Steady-state responses
• Continuous control systems
• Digital control systems

Control  design Objectives:
• Closed-loop stability
• Good command response
• Disturbance attenuation
• Robustness

Control  design Objectives:
• Closed-loop stability
• Good command response
• Disturbance attenuation
• Robustness



BIBO Stability – Stabilizing Control

9/9/2011 Classical Control 19

See  page 49-50 on the extra readings
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Goals for this lecture (MM5)
 Stability analysis 
 Definition of BIBO
 Pole locations
 Routh criteron

 Steady-state errors
 Final Theorem  
 DC-Gain 
 Stead-state errors

 Effects of zeros and additional poles



MM4: Example : First-order System 

 An design problem: control sys1 so as to have the 
same performance as sys2
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Design tasks: 
• ”Speed-up” the response
• Eliminate the steady-state error

S1=tf(0.95,[10 1]);
S2=tf(1,[1 1]); 
Step(s1,s2) 



Steady-State Error
 Objective: 

to know whether or not the response of a system can 
approach to the reference signal as time increases

 Assumption: 
The considered system is stable

 Analysis method: 
Transfer function + final-value Theorem
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Steady-State Error – Final-Value Theorem
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S1=tf(0.95,[10 1]);
S2=tf(1,[1 1]); 
Step(s1,s2) )0(1))(1(lim
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DC-Gain



Steady-State Error – System Types
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 Position-error constant
 Velocity constant
 Acceleration constant
 System types (type 0, type I, type II)
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Revisit of example: First-order System (II)
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9/0.9510/9

 What’s the tpye of original system?
 Derive the transfer function of the closed-loop system
 What’s the time constant and DC-gain of the CL system?
 What’s the feedforward gain so that there is no steady-state 

error? 
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Goals for this lecture (MM5)
 Stability analysis 
 Definition of BIBO
 Pole locations
 Routh criteron

 Steady-state errors
 Final Theorem  
 DC-Gain 
 Stead-state errors

 Effects of zeros and additional poles



System Zeros 
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 The dynamic behavior of a transfer function model can be 
characterized by the numerical value of its poles and zeros

 {zi} are the “zeros” and {pi} are the “poles”

 in order to have a physically realizable system
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How about the effects of zero(s) to system performance?



Effect of Zero in the Left Half s-Plane
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s0=tf(1,[1 1 1]); 
s1=tf([1 1],[1 1 1]); 
s2=tf([0.25 1],[1 1 1]); 
s3=tf([0.1 1],[1 1 1]);
s4=tf([0.05 1],[1 1 1]);
s5=tf([4 1],[1 1 1]);
step(s0,s1,s2,s3,s4,s5), 
grid

An additional zero in the left half-plane will increase the overshoot
If the zero is within  a factor of 4 of the real part of the complex poles 



Effect of Zero in the Right Half s-Plane
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s0=tf(1,[1 1 1]); 
s1=tf([-1 1],[1 1 1]); 
s2=tf([-0.25 1],[1 1 1]); 
s3=tf([-0.1 1],[1 1 1]);
s4=tf([-0.05 1],[1 1 1]);
s5=tf([-4 1],[1 1 1]);
step(s0,s1,s2,s3,s4,s5), 
grid

An additional zero in the right half-plane will depress the overshoot
and may cause the step response to start out in the wrong direction  

Nonminimum-phase
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Effect of  Zeros (I)
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s0=tf(1,[4 5 1]); 
s1=tf([16 1],[4 5 1]); 
s2=tf([8 1],[4 5 1]); 
s3=tf([4 1],[4 5 1]);
s4=tf([2 1],[4 5 1]);
s5=tf([1 1],[4 5 1]);
s6=tf([0.5 1],[4 5 1]);
s7=tf([-1 1],[4 5 1]);
s8=tf([-4 1],[4 5 1]);
step(s0,s1,s2,s3,s4,s5,s6
,s7,s8); grid; figure; 
pzmap(s0,s1,s2,s3,s4,s5
,s6,s7,s8) 

Effect of  Zeros (II)



Execise Five
 Determine system’s stability on slide p.13
 Determine your project system’s stability, see 

slide p.17
 Steady-state error analysis, see slide p.25 
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