MM5 Stability Analysis

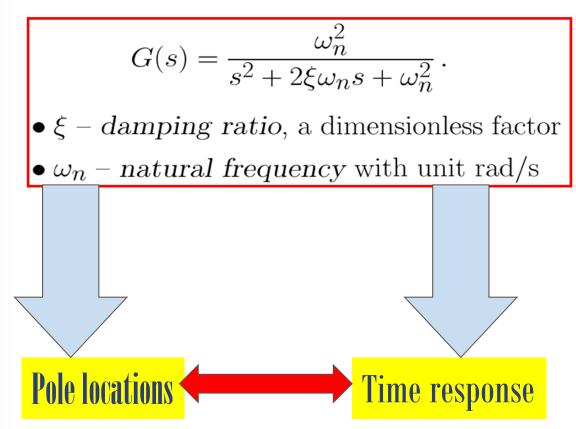
Readings:

- Section 4.4 (stability, p.212-223);
- Section 4.3 (steady-state tracking & system type, p.200-210)
- Section 3.5 (effects of zeros & add. Poles, p.131-138)
- Extra reading materials (p.40-60)

What have we talked in MM4?

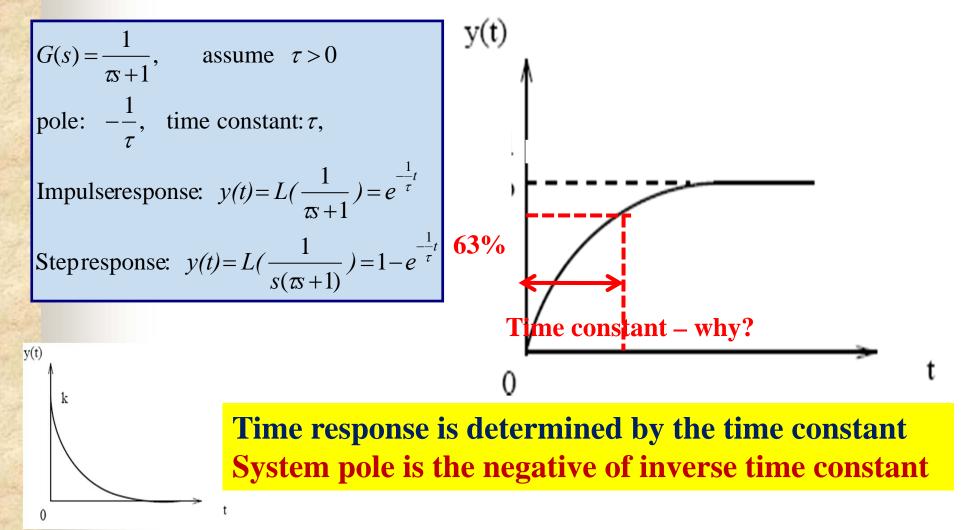
Poles vs time reponses
Feedback charactersitics
Matlab: pzmap(), sgrid

MM4 : Poles vs Performance



MM4: First-order System

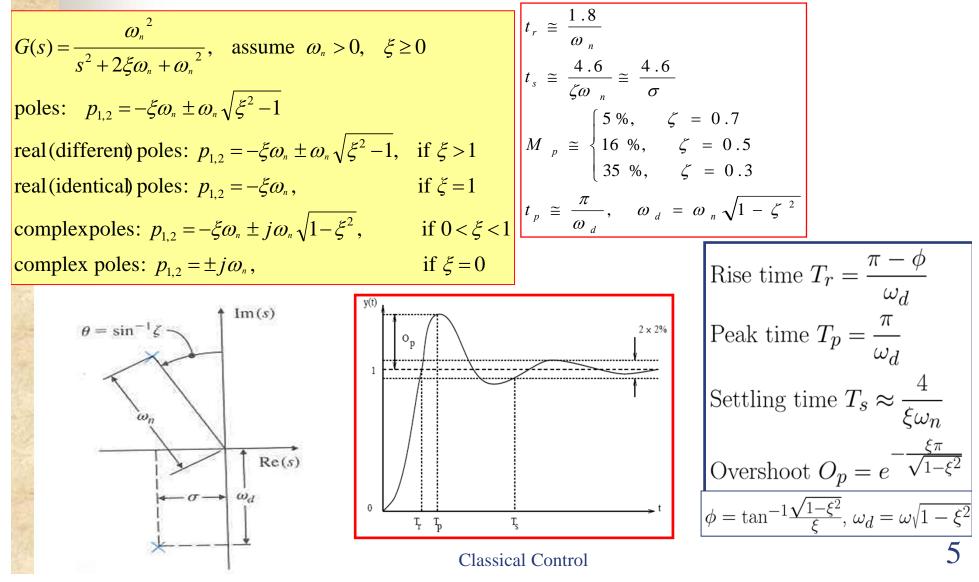
9/9/2011



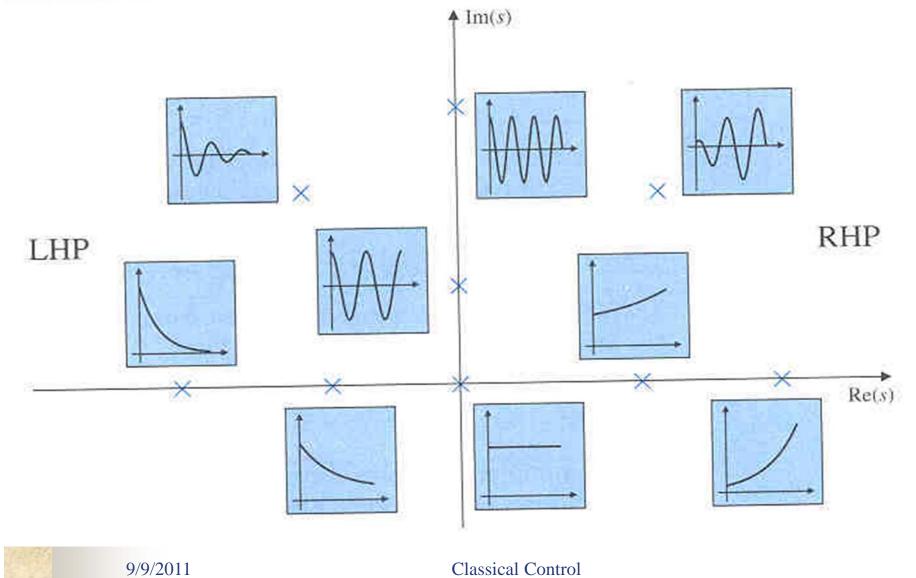
Classical Control

MM4: Second-Order System

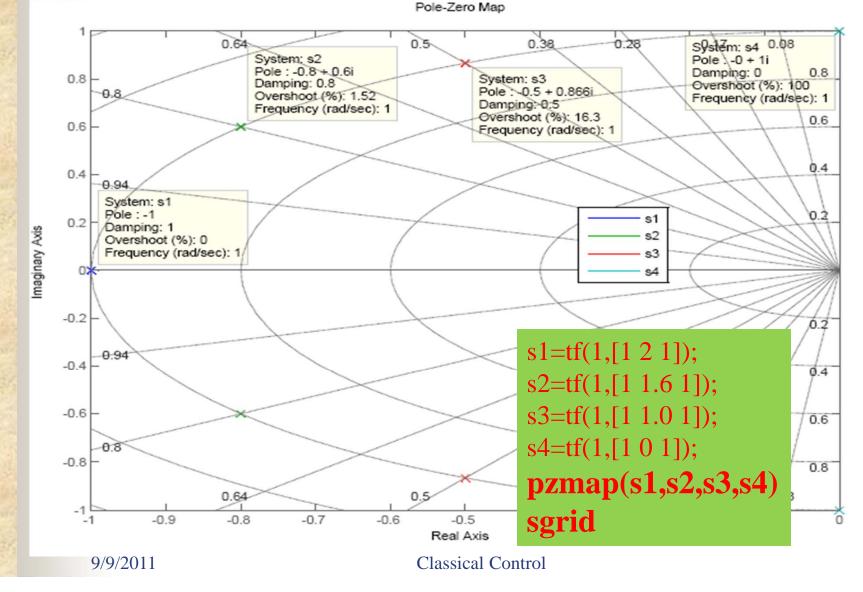
Sugar and



MM4: Summary of Pole vs Performance



MM4: Plot of Pole Locations

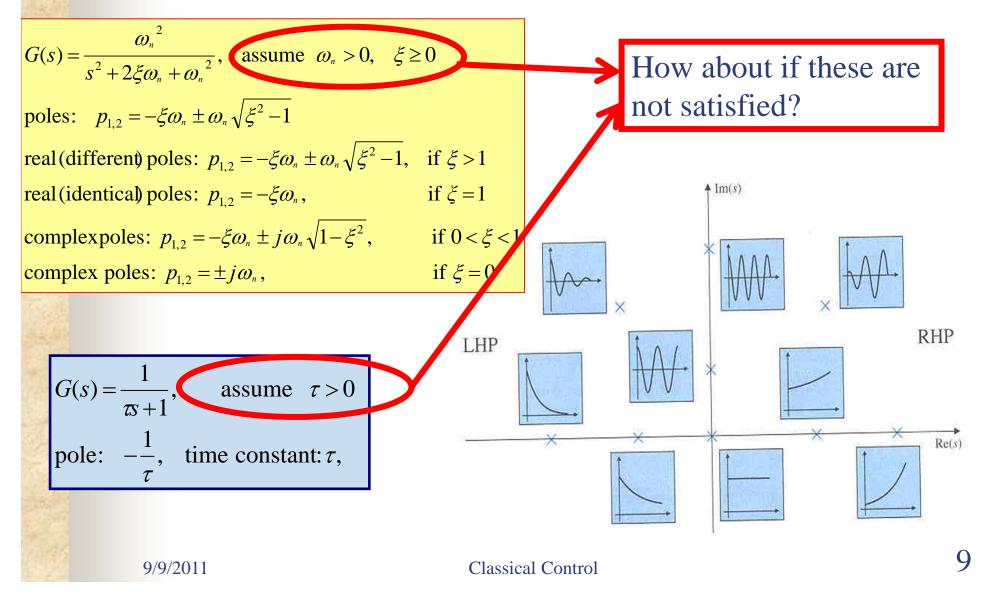


Goals for this lecture (MM5)

- Stability analysis
 - Definition of BIBO
 - Pole locations
 - Routh criteron
- Steady-state errors
 - Final Theorem
 - DC-Gain
 - Stead-state errors
 - Effects of zeros and additional poles

MM4: Summary of Pole vs Performance

All and the second second



System Stability

- Definitions
 - BIBO stability
 - Internal stability
 - ...
- Determination methods:

Impulse response function/sequence
 Roots of characteristic equation (poles)
 Routh's stability criterion
 Gain and phase margins
 Nyquist stability criterion

9/9/2011

Classical Control

BIBO Stability

- A system is said to have bounded input-bounded output
 (BIBO) stability if every bounded input results in a bounded output (regardless of what goes on inside the system)
- The continuous (LTI) system with impuse response h(t) is BIBO stable if and only if h(t) is absolutely integrallable

$$\int_{-\infty}^{\infty} |h(\tau)| d\tau < \infty$$
$$L(h(t)) = H(s)$$

All system poles locate in the left half s-plane

BIBO Stability – Characteristic Equation

Characteristic equation

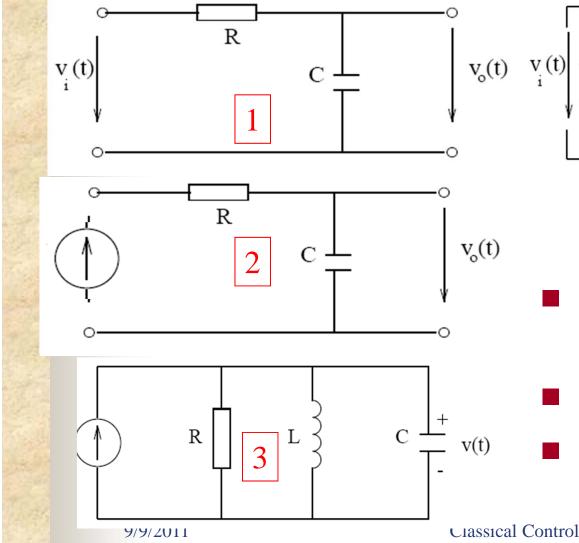
$$G(s) = \frac{\sum_{i=0}^{m} b_i s^i}{\sum_{i=0}^{n} a_i s^i}, \quad \text{characteri stic eauqtion} \quad :\sum_{i=0}^{n} a_i s^i = 0$$

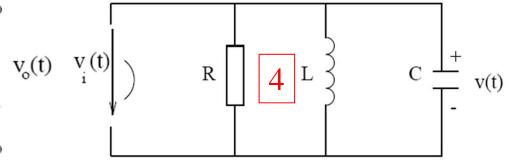
$$G(s) = \frac{\omega_n^2}{s^2 + 2\xi \omega_n + \omega_n^2}, \quad \text{characteri stic eauqtion} \quad :s^2 + 2\xi \omega_n + \omega_n^2 = 0$$

- All poles (roots of the chracteristic equation) of the continuous system are strictly in the LHP of the s-plane - asymptotic internal stability
- (Matlab: roots(den))

 $G(s) = \frac{V_o(s)}{V_i(s)} = \frac{1}{RCs + 1}$

BIBO Stability – Execise (I)





 $LC\frac{i^2(t)}{dt^2} + \frac{L}{R}\frac{di(t)}{dt} + i = u(t)$

- Are these systems BIBO stable?
 - Intuitive explanation
 - Theoretical analysis

BIBO Stability – Routh Criterion (I)

- **Motivation:** Testing stability without calculating poles
- **Criterion:** For a stable system, there is no changes in sign and no zeros in the first column of the Routh array.

Characteristic polynomial q(s):

$$a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0$$

Routh-Hurwitz Array

BIBO Stability – Routh Criterion (II)

<u>Routh-Hurwitz criterion</u>: No. of unstable roots of q(s) = No. of changes in sign of the 1st column

- One/more zeros appearing in the 1st column
 ⇒ poles with zero real part
- Marginally stable if the poles with zero real part are distinct
- Unstable if these poles are repeated

BIBO Stability – Examples

2nd-order system

$$q(s) = a_2 s^2 + a_1 s + a_0$$

Routh-Hurwitz array

$$\begin{aligned} & 1 \begin{vmatrix} a_2 & a_0 & & 1 \\ 2 & a_1 & 0 & \Rightarrow & 2 \\ 3 & b_1 & 0 & & 3 \end{vmatrix} a_0 & 0 \\ as & b_1 &= -\frac{1}{a_1} \begin{vmatrix} a_2 & a_0 \\ a_1 & 0 \end{vmatrix} = \frac{a_1 a_0 - a_2 \cdot 0}{a_1} = a_0 \end{aligned}$$

<u>Conclusion</u>: 2nd-order system is stable $\Leftrightarrow a_2, a_1, a_0$ have the same sign

3rd-order system $q(s) = a_3 s^3 + a_2 s^2 + a_1 s + a_0.$ Routh-Hurwitz array: a_1 a_0 $4 | c_1 | 0$ $4|a_0|$ 0 <u>Conclusion</u>: Stability of 3rd-order system \Leftrightarrow (1) a_3 , a_2 , a_1 , a_0 have the same sign; (2) $a_2a_1 > a_3a_0$.

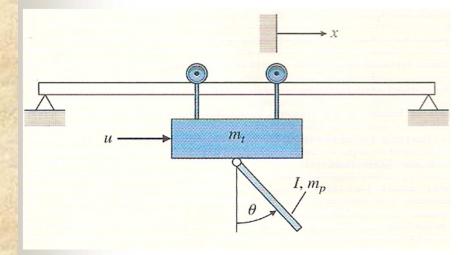
See page 46-49 on the extra readings

9/9/2011

Classical Control

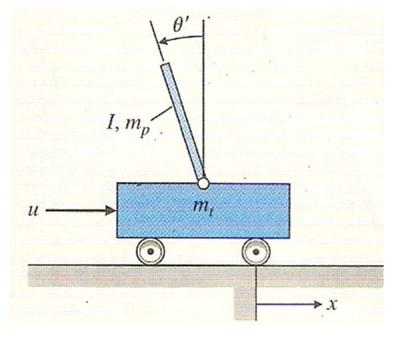
BIBO Stability – Execise (II)

How about the stability of your project systems?



$$(I + m_p l^2)\ddot{\theta} + m_p g l\theta = -m_p l\ddot{x}$$
$$m_t + m_p)\ddot{x} + b\dot{x} + m_p l\ddot{\theta} = u.$$

$$(I + m_p l^2)\ddot{\theta}' - m_p g l\theta' = m_p l\ddot{x}$$
$$(m_t + m_p)\ddot{x} + b\dot{x} - m_p l\ddot{\theta}' = u.$$



BIBO Stability – **Objectives of Control**

Control design Objectives:

- Closed-loop stability
- Good command response
- Disturbance attenuation
- Robustness

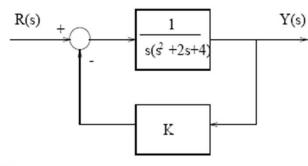
Performance:

- time domain specifications
- Frequency specifications
- Dynamic transient responses
- Steady-state responses
- Continuous control systems
- Digital control systems

See page 49-50 on the extra readings

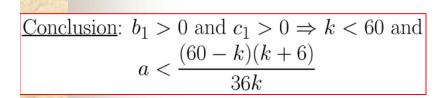
BIBO Stability – Stabilizing Control

<u>Example 1</u>: Determine the controller gain K to stablise the 3rd-order system

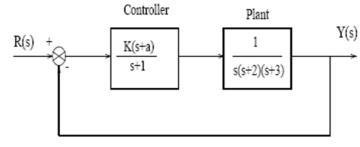


<u>Conclusion</u>: Stability of the system requires 0 < K < 8

Example 2: To find out the acceptable range of k > 0 and a > 0 for the controlled system to be stable



9/9/2011

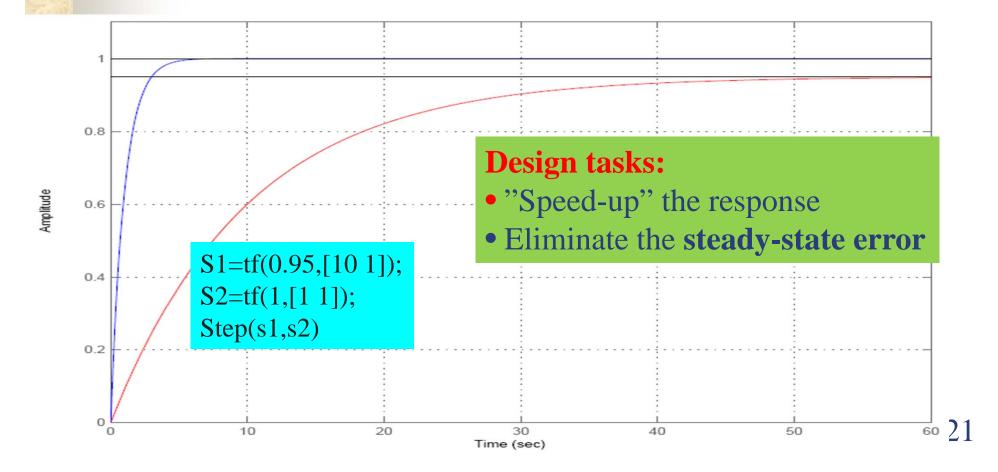


Goals for this lecture (MM5)

- Stability analysis
 - Definition of BIBO
 - Pole locations
 - Routh criteron
- Steady-state errors
 - Final Theorem
 - DC-Gain
 - Stead-state errors
- Effects of zeros and additional poles

MM4: Example : First-order System

An design problem: control sys1 so as to have the same performance as sys2



Steady-State Error

Objective:

to know whether or not the response of a system can approach to the reference signal as time increases

Assumption:

The considered system is stable

Analysis method:

Transfer function + final-value Theorem

Steady-State Error – Final-Value Theorem

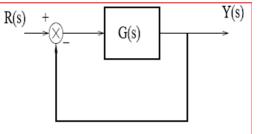
Definition Steady-state error e(t) = r(t) - y(t) for $t \to \infty$ where r(t) – reference signal; y(t) – output Final value theorem: $e(\infty) = \lim_{t \to \infty} e(t) = \lim_{s \to 0} sE(s)$ E(s) – Laplace transform of e(t)**DC-Gain** $e(\infty) = \lim_{s \to 0} s(R(s) - Y(s)) = \lim_{s \to 0} s(R(s) - G(s)R(s))$ S1=tf(0.95,[10 1]); $= \lim_{s \to 0} s(1 - G(s))R(s), \quad I(s) = \frac{1}{s}$ S2=tf(1,[1 1]); $= \lim_{s \to 0} (1 - G(s)) = 1 - G(0)$ Step(s1,s2)**Classical Control** 9/9/2011

Steady-State Error – System Types

- **Position-error constant**
- Velocity constant

Acceleration constant

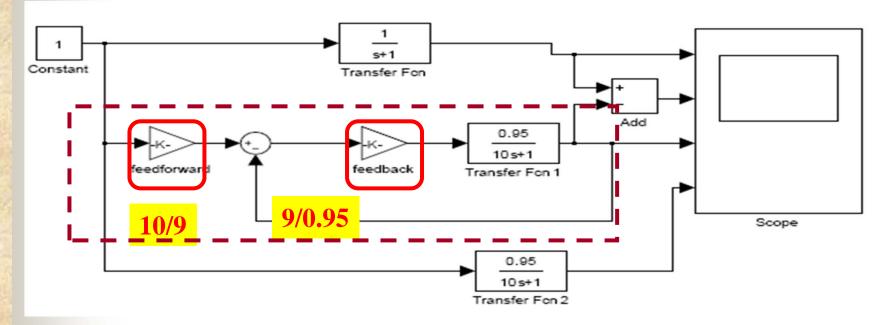
$$K_{p} = \lim_{s \to 0} G_{o}(s)$$
$$K_{v} = \lim_{s \to 0} sG_{o}(s)$$
$$K_{a} = \lim_{s \to 0} s^{2}G_{o}(s)$$



System types (type 0, type I, type II)

Type 0 systems	Step Input	Ramp Input	Parabolic Input
Steady State Error Formula	1/(1+Kp)	1/Kv	1/Ka
Static Error Constant	Kp = constant	Kv = 0	Ka = 0
Error	1/(1+Kp)	infinity	infinity
Type 1 systems	Step Input	Ramp Input	Parabolic Input
Static Error Constant	Kp = infinity	Kv = constant	Ka = 0
Error	0	1/Kv	infinity
Type 2 systems	Step Input	Ramp Input	Parabolic Input
Static Error Constant	Kp = infinity	Kv = infinity	Ka = constant
Error	0	0	1/Ka

Revisit of example: First-order System (II)



- What's the tpye of original system?
- Derive the transfer function of the closed-loop system
- What's the time constant and DC-gain of the CL system?
- What's the feedforward gain so that there is no steady-state error?

9/9/2011

Classical Control

Goals for this lecture (MM5)

- Stability analysis
 - Definition of BIBO
 - Pole locations
 - Routh criteron
- Steady-state errors
 - Final Theorem
 - DC-Gain
 - Stead-state errors
- Effects of zeros and additional poles

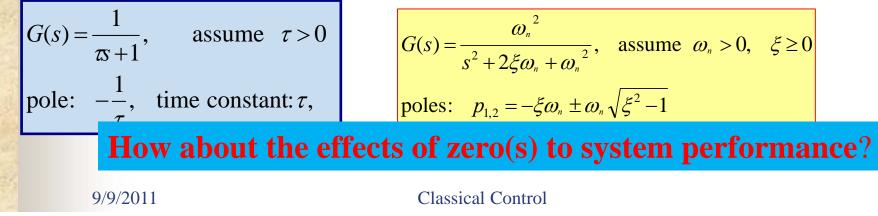
System Zeros

 The dynamic behavior of a transfer function model can be characterized by the numerical value of its poles and zeros

$$G(s) = \frac{b_m(s-z_1)(s-z_2)\dots(s-z_m)}{a_n(s-p_1)(s-p_2)\dots(s-p_n)}$$
(6-7)

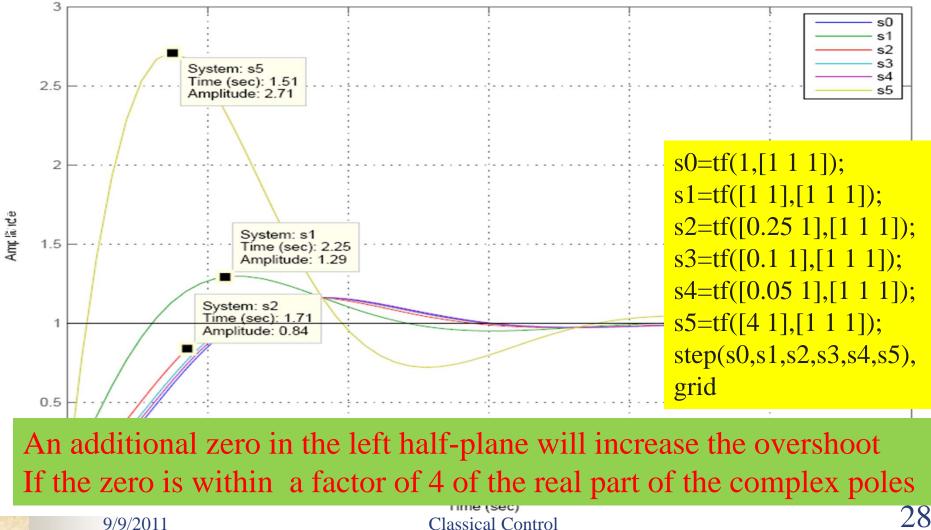
• $\{z_i\}$ are the "**zeros**" and $\{p_i\}$ are the "**poles**"

• $n \ge m$ in order to have a physically realizable system



Effect of Zero in the Left Half s-Plane

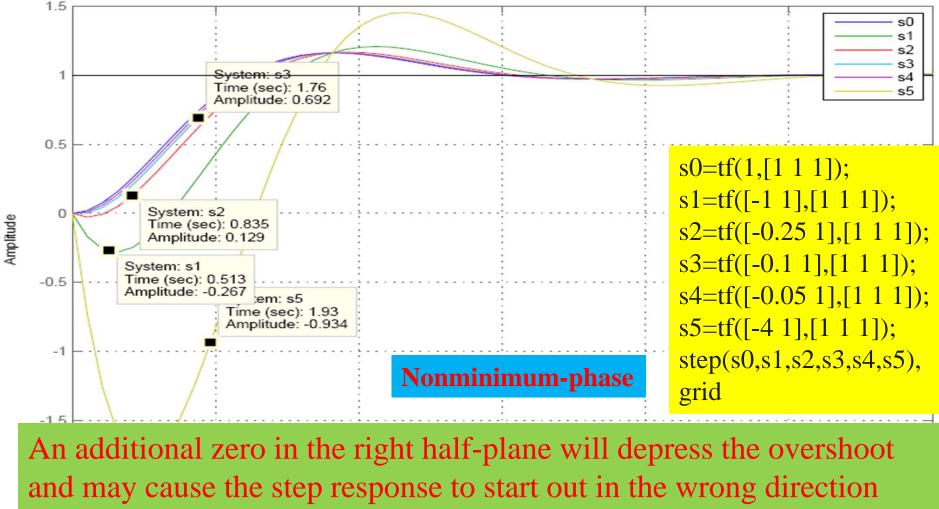
Step Response



28

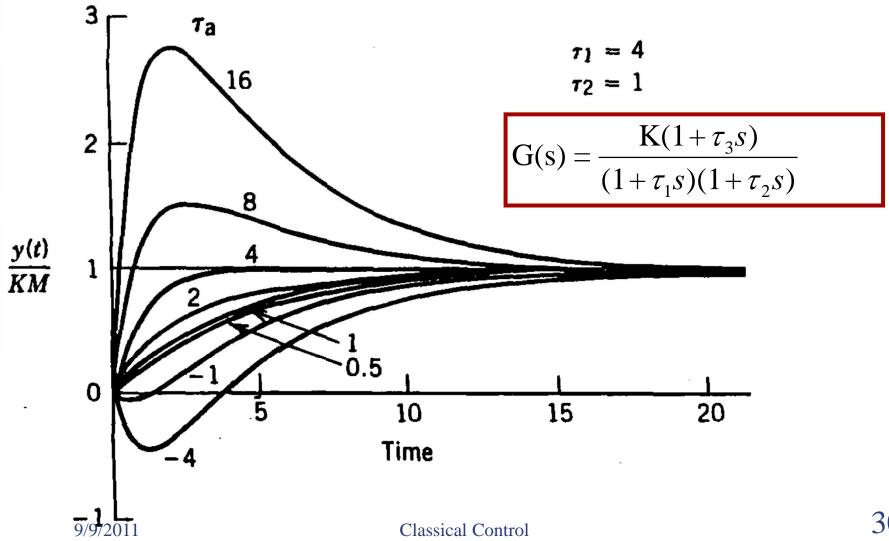
Effect of Zero in the Right Half s-Plane

Step Response



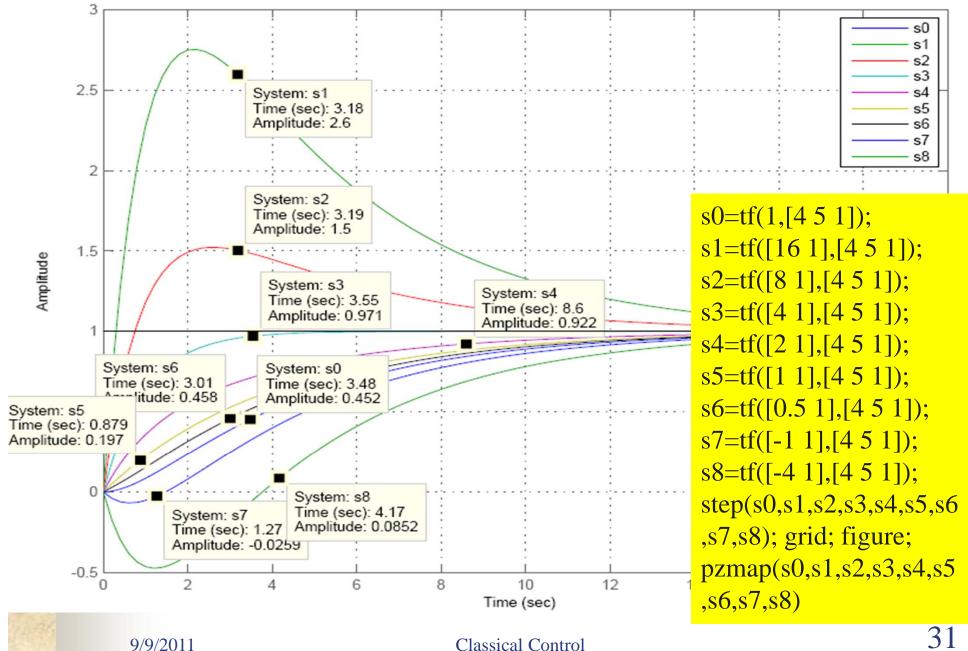
9/9/2011

Effect of Zeros (I)



30

Effect of Zeros (II) Step Response



Execise Five

- Determine system's stability on slide p.13
- Determine your project system's stability, see slide p.17
- Steady-state error analysis, see slide p.25