MM6 PID Controllers

Readings:

- Section 4.2 (the classical three-term controllers, p.179-196 except subsection 4.2.5);
- Extra reading materials

What have we talked in MM5?

- Stability analysis
- Steady-state errors
- •Effects of zeros & additional poles

MM5 : BIBO Stability

- A system is said to have bounded input-bounded output (BIBO) stability if every bounded input results in a bounded output (regardless of what goes on inside the system)
- The continuous (LTI) system with impuse response h(t) is BIBO stable if and only if h(t) is absolutely integrallable
- All system poles locate in the left half s-plane asymptotic internal stability
- Routh Criterion: For a stable system, there is no changes in sign and no zeros in the first column of the Routh array

MM5 : Steady-State Error

- **Objective:** to know whether or not the response of a system can approach to the reference signal as time increases
- Assumption: The considered system is stable
- Analysis method: Transfer function + final-value Theorem

$$e(\infty) = \lim_{s \to 0} s(R(s) - Y(s)) = \lim_{s \to 0} s(R(s) - G(s)R(s))$$

= $\lim_{s \to 0} s(1 - G(s))R(s), \quad R(s) = \frac{1}{s}$
= $\lim_{s \to 0} (1 - G(s)) = 1 - G(0)$
> **DC-Gain**

- Position-error constant
- Velocity constant
- Acceleration constant

$$K_{p} = \lim_{s \to 0} G_{o}(s)$$
$$K_{v} = \lim_{s \to 0} sG_{o}(s)$$
$$K_{a} = \lim_{s \to 0} s^{2}G_{o}(s)$$

9/9/2011

MM5 : Effect of Additional Zero & Pole

Step Response

An additional zero in the left half-plane will increase the overshoot If the zero is within a factor of 4 of the real part of the complex poles

An additional zero in the right half-plane will depress the overshoot and may cause the step response to start out in the wrong direction

System: s1

Amplitude: 0.84

2

de

0

9/9/2011

An additional pole in the left half-plane will increase the rise time significantly if the extra pole is within a factor of 4 of the real part of the complex poles

6 Time (sec)

Classical Control

8

10

12

5

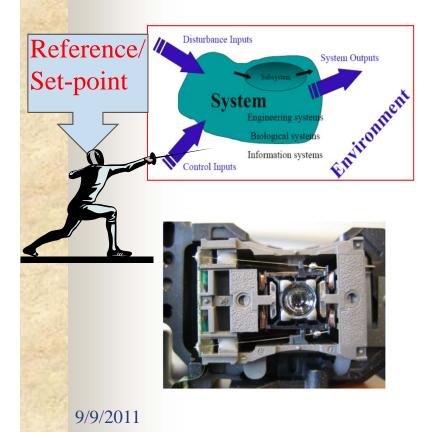
4

Goals for this lecture (MM6)

- Definition characterisitc of PID control
 - P- controller
 - PI- controller
 - PID controller
 - Ziegler-Nichols tuning methods
 - Quarter decay ratio method
 - Ultimate sensitivity method

Control objectives

Control is a process of causing a system (output) variable to conform to some desired status/value (**MM1**)



Control Objectives

- **Stable (MM5)**
- Quick responding (MM3, 4)
- Adequate disturbance rejection
- Insensitive to model & measurement errors
- Avoids excessive control action
- Suitable for a wide range of operating conditions
- (extra readings: Goodwin's lecture)

Feedback Control Characteristics(MM4)

Control Objectives

- Stable
- Quick responding
- Adequate disturbance rejection
- Insensitive to model & measur. errors
- Avoids excessive control action
- A wide operating range

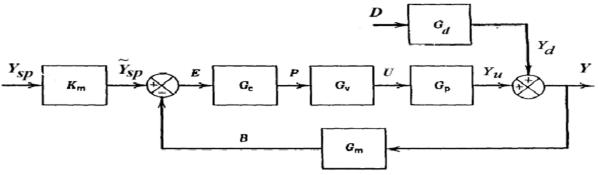
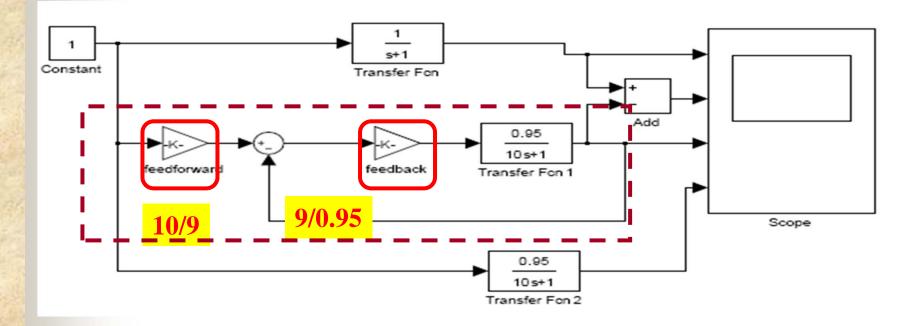


Figure 12.1. Block diagram for a standard feedback control system.

- System errors can be made less sensitive to **disturbance** with feedback than they are in open-loop systems
- In feedback control, the error in the controlled quantity is less sensitive **to variations in the system gain/parameters**
- Design tradeoff between gain and disturbance

Recall example in MM5:



"Speed up" the original system by using feedback (P-) control
 Eliminate the steady-state error by using feedforward gain

Definition of PID Controllers

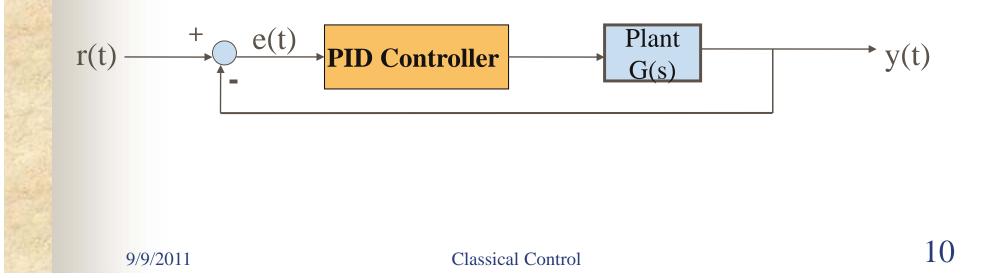
PID Means:

- P: Proportional (control)
- **I** : Integral (control)
- **D**: Derivative (control)

$$u(t) = KC(t)$$
$$u(t) = \frac{K}{T_I} \int_{t_0}^t e(\tau) d\tau$$
$$u(t) = KT_D \dot{e}(t)$$

 $u(t) = K\rho(t)$

PID Control System Structure: cascade control

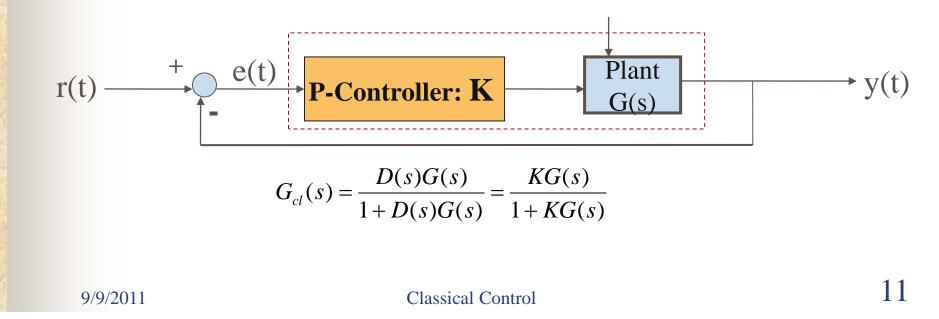


PID Control: Proportional Control (I)

Control Structure

Time Domain : u(t) = Ke(t)Frequency Domain : $D(s) = \frac{U(s)}{E(s)} = K$

Closed-loop Control System



PID Control: Proportional Control (II)

Closed loop Control System

$$\mathbf{r}(t) \xrightarrow{+} e(t) \xrightarrow{} \mathbf{P}\text{-} \mathbf{Controller: } \mathbf{K} \xrightarrow{} \mathbf{Plant} \xrightarrow{} g(s) \xrightarrow{} y(t)$$

- Advantage: a simple controller (–amplifier)
 Disadvantages:
 - Steady state offset/error problem
 - (type-0, -1, -2 systems –MM5)
 - Disturbance rejection problem

unity feedback sys

$$K_{p} = \lim_{s \to 0} G_{o}(s) \qquad e_{ss} = \frac{1}{1 + K_{p}}$$

$$K_{v} = \lim_{s \to 0} sG_{o}(s) \qquad e_{ss} = \frac{1}{K_{v}}$$

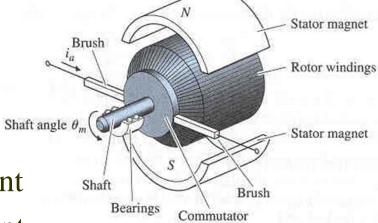
$$K_{a} = \lim_{s \to 0} s^{2}G_{o}(s) \qquad e_{ss} = \frac{1}{K_{a}}$$

Example: Speed Control of a DC Motor

Working mechanism of a DC motor $T = K_{t}i_{a}$

$$e = K_e \theta_m'$$

 K_t torque constant i_a armature current K_e electromotive force (emf) constant



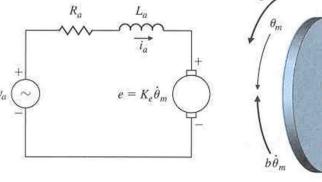
Differential equation description

J

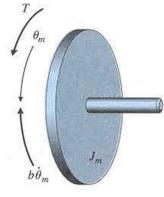
9/9/2011

$$J_{m} \ddot{\theta}_{m} + b \dot{\theta}_{m} = K_{t} i_{a}$$
$$L_{a} \dot{i}_{a} + R_{a} i_{a} = v_{a} - K_{e} \dot{\theta}_{m}$$
simplified :

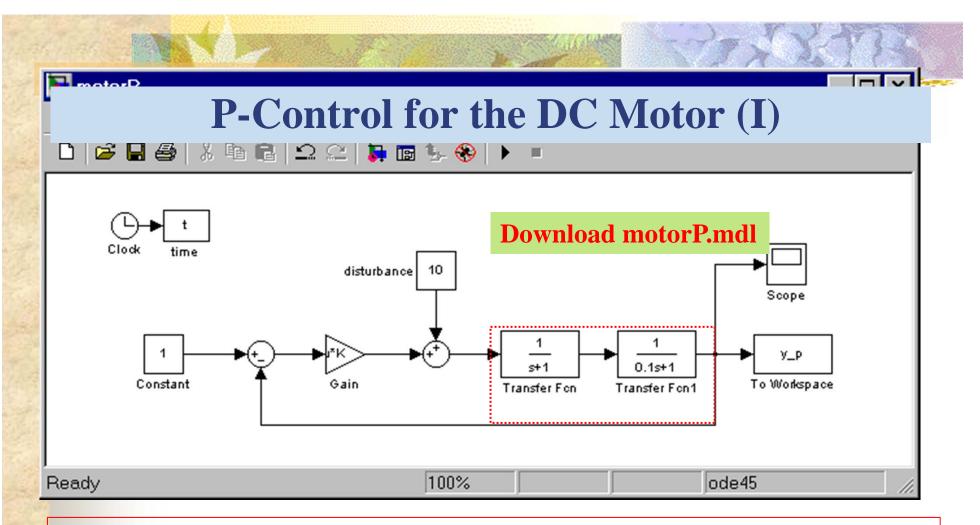
$$\theta_{m}^{"} + (b + \frac{K_{t} K_{e}}{R_{a}}) \theta_{m}^{"} = \frac{K_{t}}{R_{a}} v$$



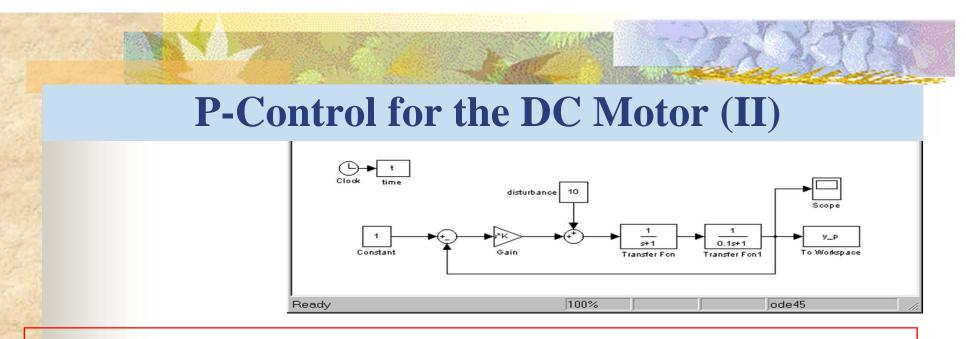
See FC p.47-49



а



- Poles of the original system?
- Image the step response (undamped, underdamped, critially damped or over damped)
- Type of this original system?



Tune gain K value, what we can observe:

- Larger gain leads to quicker response, but with larger oscillation
- There is always steady-state error. This error decreases as K value increases
- Effect of disturbance is always existing in the response, which causes extra steady-state error
 - The effect of disturbance can be reduced by increasing K value

introduce one more degree-of-freedom ...

PID Control: **PI Control (I)**

Control Structure T_I – integral/reset time

Time Domain : $u(t) = K(e(t) + \frac{1}{T_I} \int_{t_0}^t e(\tau) d\tau)$ Frequency Domain : $D(s) = \frac{U(s)}{E(s)} = K(1 + \frac{1}{T_I s})$

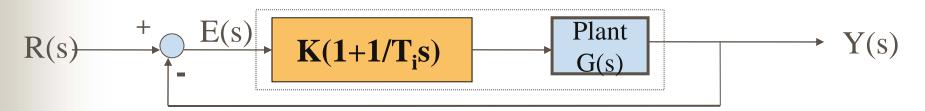
Closed loop-Control System

$$R(s) \xrightarrow{+} E(s) \xrightarrow{} K(1+1/T_{i}s) \xrightarrow{} Plant_{G(s)} \xrightarrow{} Y(s)$$

$$G_{cl}(s) = \frac{D(s)G(s)}{1+D(s)G(s)} = \frac{K(1+\frac{1}{T_{l}s})G(s)}{1+K(1+\frac{1}{T_{l}s})G(s)} = \frac{K(T_{l}s+1)G(s)}{T_{l}s+K(T_{l}s+1)G(s)}$$

Classical Control

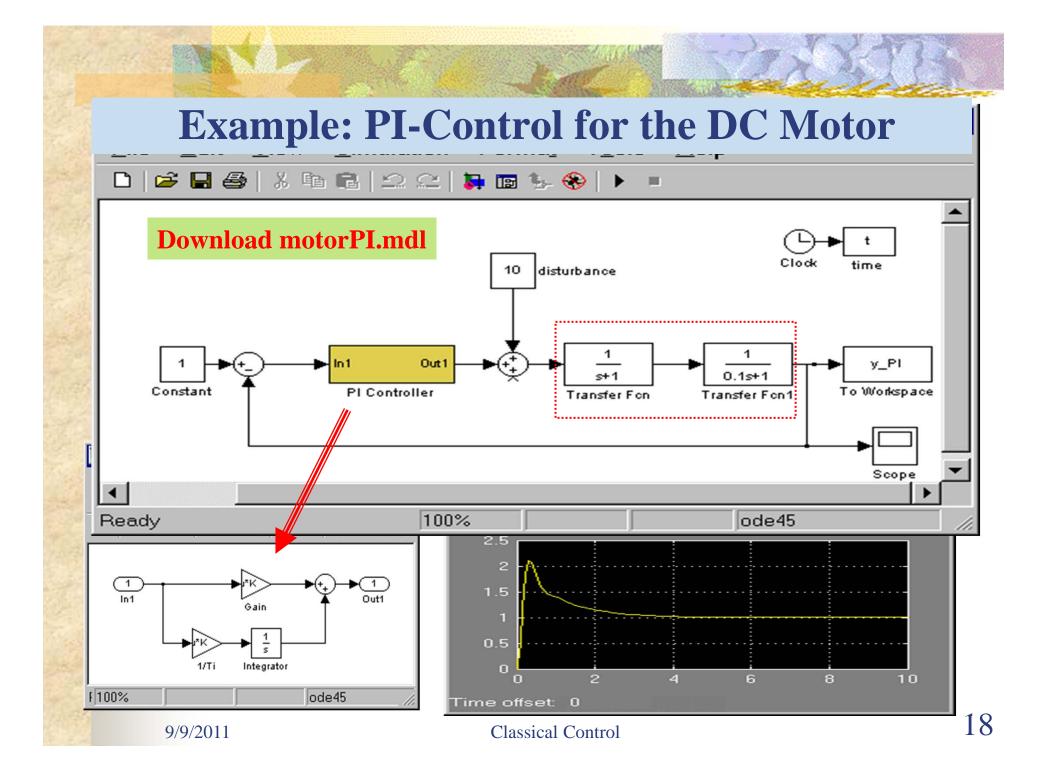
PID Control: PI Control (II)



Control-loop transfer function

Advantages:

- Eliminate steady state offset/error (why?)
- Good steady-state disturbance rejection (why?)
- How about the transient response?



PID Control: PID Feedback Control (I)

Control Structure T_D – Derivative/rate time

$$u(t) = K(e(t) + \frac{1}{T_I} \int_{t_0}^t e(\tau) d\tau + T_D \dot{e}(t)$$
$$D(s) = \frac{U(s)}{E(s)} = K(1 + \frac{1}{T_I s} + T_D s)$$

Closed loop Control System

$$\mathbf{R}(s) \xrightarrow{\mathbf{F}(s)} \mathbf{K}(1+1/T_{i}s+T_{D}s) \xrightarrow{\mathbf{Plant}} \mathbf{G}(s)$$

$$G_{cl}(s) = \frac{D(s)G(s)}{1+D(s)G(s)} = \frac{K(T_{D}T_{I}s^{2}+T_{I}s+1)G(s)}{T_{I}s+K(T_{D}T_{I}s^{2}+T_{I}s+1)G(s)}$$

9/9/2011

Classical Control

PID Control: PID Feedback Control (II)

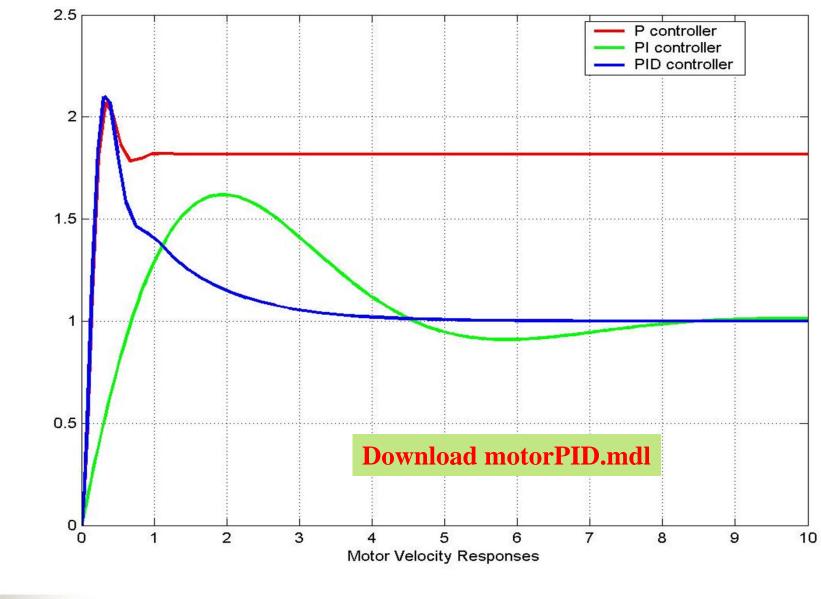
$$\mathbf{R}(s) \xrightarrow{+} E(s) \xrightarrow{} \mathbf{K}(1+1/\mathbf{T}_{i}s+\mathbf{T}_{D}s) \xrightarrow{} \mathbf{Plant} \xrightarrow{} \mathbf{G}(s) \xrightarrow{} \mathbf{Y}(s)$$

Advantages:

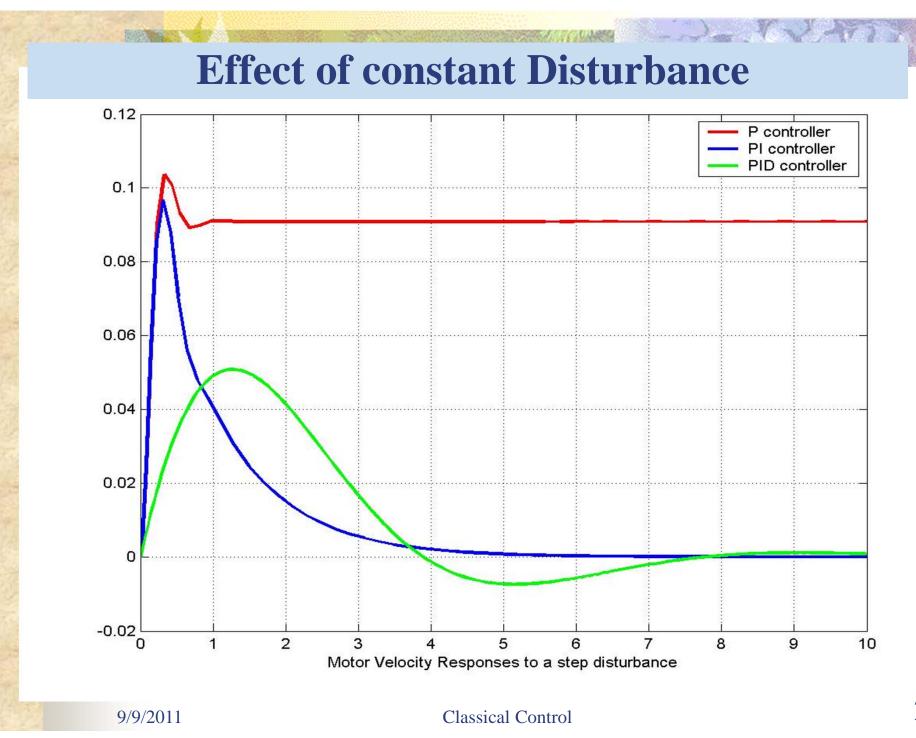
- Increase the damping \rightarrow Improve the stability
- Good transient and steady disturbance rejection

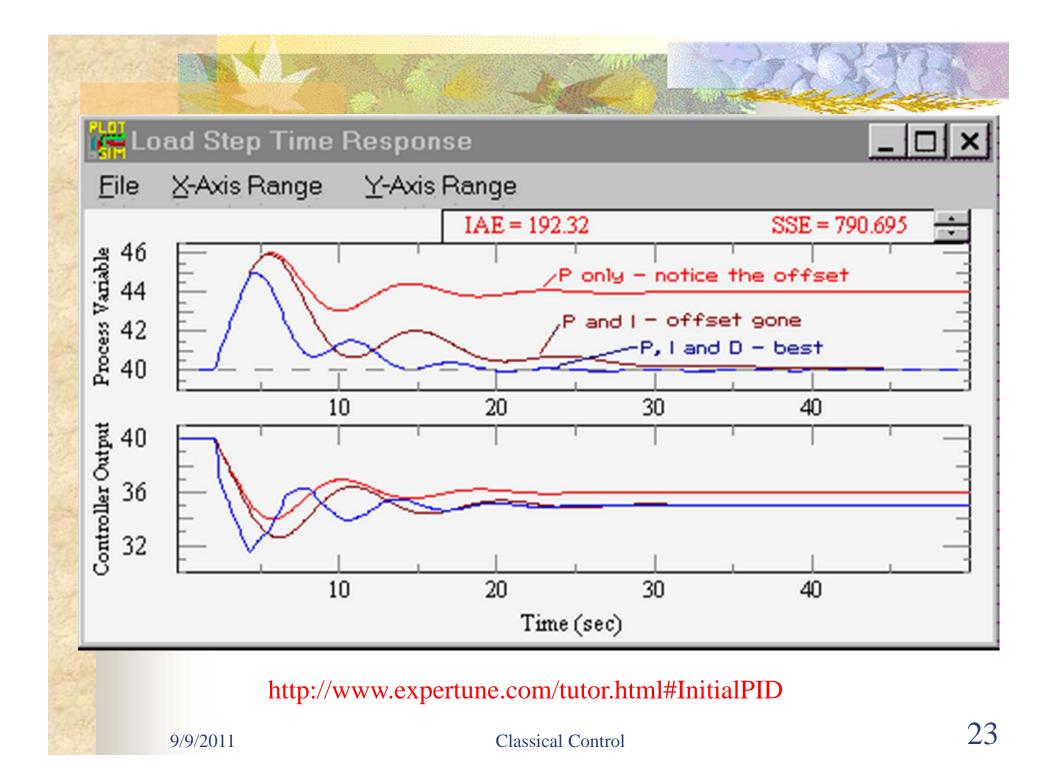
The most popular control technique used in industry!

PID-Control for the DC Motor



9/9/2011





PID Control: Characteristic Summary

A proportional controller (Kp) will have the effect of reducing the rise time and will reduce ,but never eliminate, the steady-state error

An integral control (Ki) will have the effect of eliminating the steady-state error, but it may make the transient response worse.
A derivative control (Kd) will have the effect of increasing the stability of the system, reducing the overshoot, and improving the transient response.

CL RESPONSE	RISE TIME	OVERSHOOT	SETTLING TIME	S-S ERROR	
Кр	Decrease	Increase	Small Change	Decrease	
Ki	Decrease	Increase	Increase	Eliminate	
Kd	Small Change	Decrease	Decrease	Small Change	
9/9/2011		Classical Control			24

PID Control: General Design Procedure

When you are designing a PID controller for a given system, follow the steps shown below to obtain a desired response.

- Obtain an open-loop response and determine what needs to be improved
- Add a proportional control to improve the rise time
- Add a derivative control to improve the overshoot
- Add an integral control to eliminate the steady-state error
- Adjust each of Kp, Ki, and Kd until you obtain a desired overall response.

http://www.engin.umich.edu/group/ctm/PID/PID.html

9/9/2011

Goals for this lecture (MM6)

- Definition & characterisitc of PID control
 - P- controller
 - PI- controller
 - PID controller
- **Ziegler-Nichols tuning methods**
 - Quarter decay ratio method
 - Ultimate sensitivity method

PID Trial Tuning

The "by-guess-and-by-golly" method

1. Enter an initial set of tuning constants from experience. A conservative setting would be a gain of 1 or less and a reset of less than 0.1.

- 2. Put loop in automatic with process "lined out".
- 3. Make step changes (about 5%) in setpoint.
- 4. Compare response with diagrams and adjust.

Ziegler-Nichols Mthods

- These well-known tuning rules were published by Z-N in 1942.
- Z-N controller settings are widely considered to be an "industry standard".
- Other readings/resources:

•Control Tutorials for Matlab, http://www.engin.umich.edu/group/ctm/

• Process Control Articles, Software Reviews,

http://www.expertune.com/articles.html

• http://www.jashaw.com/pid/tutorial/

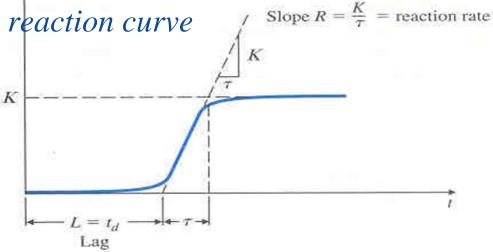
Tuning PID: Quarter decay ratio method (I)

$$u(t) = K(e(t) + \frac{1}{T_I} \int_{t_0}^t e(\tau) d\tau + T_D \dot{e}(t) \qquad D(s) = \frac{U(s)}{E(s)} = K(1 + \frac{1}{T_I s} + T_D s)$$

 $\uparrow y(t)$

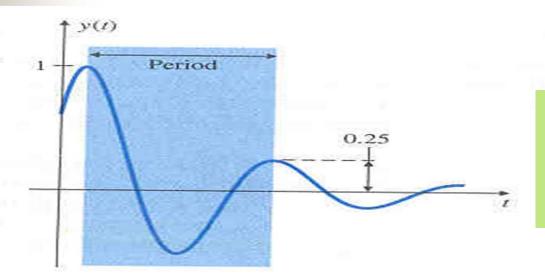
Ziegler-Nichols Quarter decay ratio method:

- Precondition: system is stable
- Open loop tuning method
- Step response: \rightarrow *Process reaction curve*
- Slope rate $\mathbf{R} = \mathbf{K}/\tau$
- Lag time L



Classical Control

Tuning PID: Quarter decay ratio method (II)



Exercise 1: Design a P, PI, PID controller for the DC motor example, According to quarter decay m.

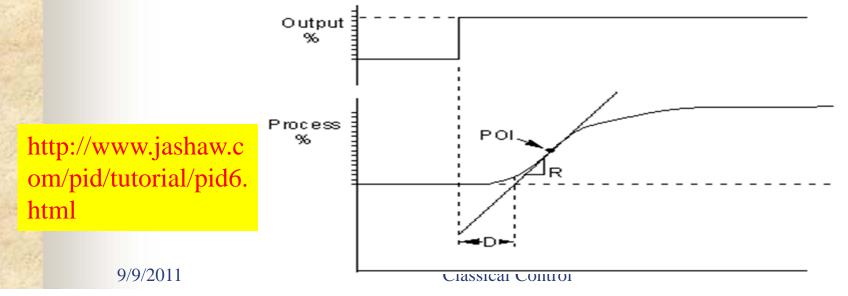
Ziegler–Nichols Tuning for the Regulator $D(s) = K(1 + 1/T_1s + T_Ds)$, for a Decay Ratio of 0.25

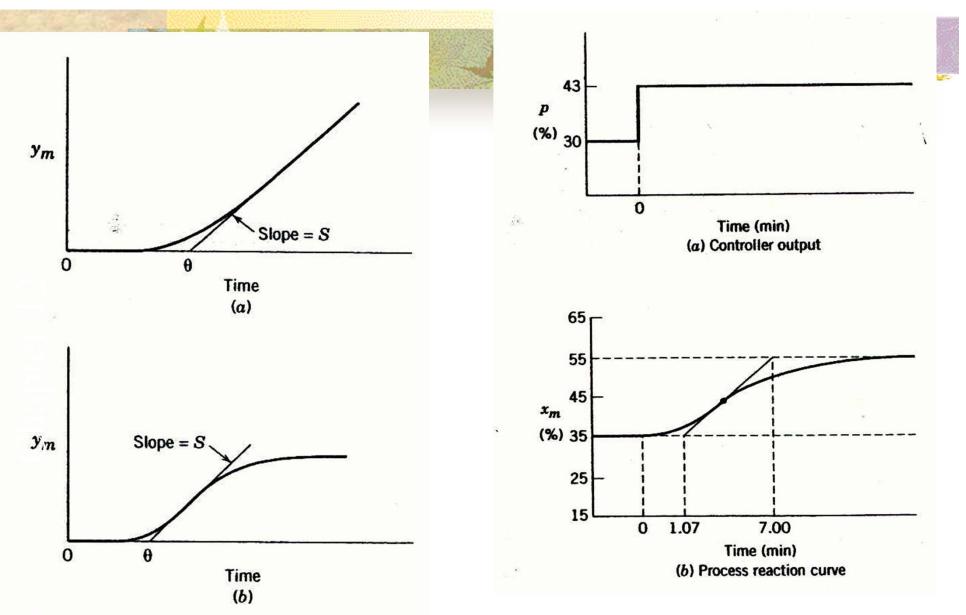
Type of Controller	Optimum Gain	
Proportional	K = 1/RL	
PI	$\begin{cases} K=0.9/RL, \\ T_1=L/0.3 \end{cases}$	
PID	$\begin{cases} \mathcal{K} = 1.2/RL, \\ T_{I} = 2L, \\ T_{D} = 0.5L \end{cases}$	
9/9/2011	Classical Control	30

Tuning PID: Quarter decay ratio method(III)

Pratical issues in Quarter decay ratio method:

- Process reaction curve
 - X % Change of control output
 - R %/min. Rate of change at the point of inflection (POI)
 - D min. Time until the intercept of tangent line and original process value





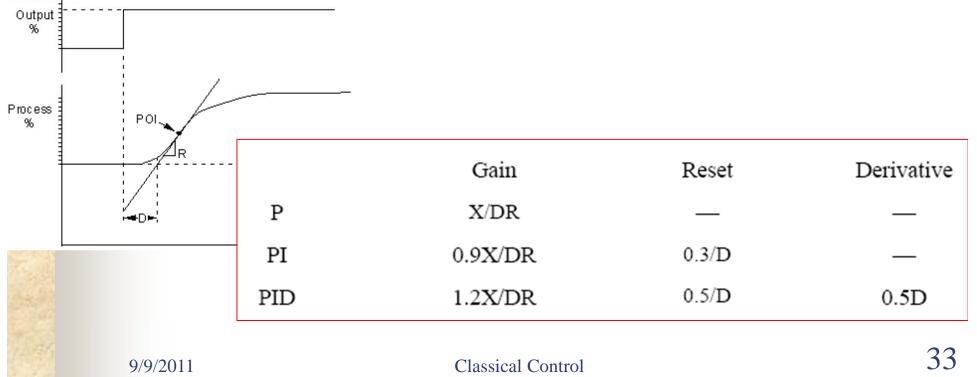
Typical process reaction curves: (a) non-self-regulating process, (b) self-regulating process.

9/9/2011

Classical Control

Tuning PID: Quarter decay ratio method(IV)

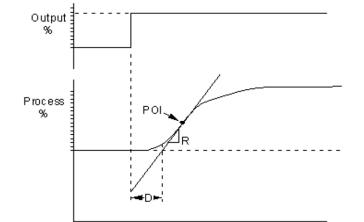
- X % Change of control output
- R %/min. Rate of change at the point of inflection (POI)
- D min. Time until the intercept of tangent line and original process value



http://www.jashaw.com/pid/tutorial/ pid6.html

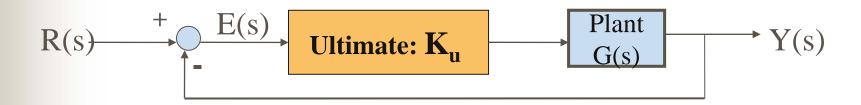
Tuning PID: Quarter decay ratio method(V)

- Another means of determining parameters based on the ZN open loop is: After "bumping" the output, watch for the point of **inflection** and note:
- Ti min Time from output change to POI
- P%Process value change at POI
- R %/min Rate of change at POI
- X%Change in output



- D is calculated: D=Ti - P/R
- D & X are then used ------

Tuning PID: Ultimate Sensitivity Method(I)

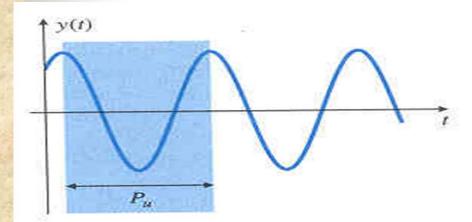


- Place controller into automatic with low gain, no reset or derivative.
- Gradually increase gain, making small changes in the setpoint, until oscillations start.
- Adjust gain to make the oscillations continue with a constant amplitude. $|-\mathbb{P}_{u}-\mathbb{P}_{u}|$
- Note the gain (Ultimate Gain, Gu,) and Period (Ultimate Period, Pu.)

9/9/2011

Classical Control

Tuning PID: Ultimate Sensitivity Method(II)



Closed loop tuning method

Ziegler–Nichols Tuning for the Regulator $D(s) = K(1 + 1/T_1s + T_Ds)$, Based on a Stability Boundary

Type of Controller	Optimum Gain	
Proportional	$K = 0.5K_u$	
PI	$ \begin{aligned} & \mathcal{K} = 0.5 \mathcal{K}_u \\ & \begin{cases} \mathcal{K} = 0.45 \mathcal{K}_u \\ \mathcal{T}_l = 1/1.2 \mathcal{P}_u \end{aligned} $	
PID	$\begin{cases} K = 0.6K_{u} \\ T_{I} = \frac{1}{2}P_{u} \\ T_{D} = \frac{1}{8}P_{u} \end{cases}$	

9/9/2011

MM6 Exercise

Design a P, PI, PID controller for the following DC motor speed control, According to quarter decay method.

Download ZN_tuning_motor.mdl

Classical Control