MM7 Practical Issues Using PID Controllers

Readings:

- FC textbook: Section 4.2.7 Integrator Antiwindup (p.196-200)
- Extra reading: Hou Ming's lecture notes (p.60-69)
- Extra reading: M.J. Willis notes on PID controler

What have we talked in MM6?

• PID controllers

• Ziegler-Nichols tuning methods

MM6:Characteristics of PID Controllers

- Proportional gain, K_p larger values typically mean faster response. An excessively large proportional gain will lead to process instability and oscillation.
 - Integral gain, K_i larger values imply steady state errors are eliminated more quickly. The trade-off is larger overshoot
- Derivative gain, K_d larger values decrease overshoot, but slows down transient response and may lead to instability due to signal noise amplification in the differentiation of the error.

MM6: **PID Tuning Methods- Trial-Error**

<u>Rules of thumb</u>:

 $K_p > K_i > K_d,$ $K_p \approx (5 \sim 10) K_i,$ $K_i \approx (5 \sim 10) K_d$

• Adavantages: Simple

- Disadvantages:
 - unsatisfactory performance
 - expensive on-site experiment
 - issues of equipment safety

<u>Procedure</u>:

Step 1: Set $K_i = 0$ & $K_d = 0$. Increase K_p from zero;

Step 2: Fix K_p . Increase K_i from zero;

Step 3: Fix K_p & K_i . Increase K_d from zero.

<u>Note</u>: Several iterations of the procedure may be necessary

See Hou Ming's lexture notes

MM6: **PID Tuning – Zieglor Niechols (I)**

Pre-condition: system has no overshoot of step response

MM6: PID Tuning – Zieglor Niechols (II)

Pre-condition: system order > 2

Control	K_p	K_i	K_d
Р	$\frac{K_o}{2}$	0	0
PI	$\frac{9K_o}{20}$	$\frac{3K_oT_o}{8}$	0
PID	$\frac{3K_o}{5}$	$\frac{3K_oT_o}{10}$	$\frac{3K_oT_o}{40}$

y(t) t 0 Т See Hou Ming's lexture notes

Goals for this lecture (MM7)

Some **practical issues** when developing a PID controler:

- Integral windup & Anti-windup methods
- Derivertive kick
- When to use which controller?
- Operational Amplifier Implementation
- Other tuning methods

PI control: Reset time

Control Structure T_I – integral/reset time

Time Domain : $u(t) = K(e(t) + \frac{1}{T_I} \int_{t_0}^t e(\tau) d\tau)$ Frequency Domain : $D(s) = \frac{U(s)}{E(s)} = K(1 + \frac{1}{T_I s})$

Integral Windup

Integral windup

Integration (I) \rightarrow actuator saturation phenomena

Anti-windup

Turn off the integral action as soon as the actuator saturates

Anti-windup methods

- Implement with a dead zone
- Implement with a nonlinearity
- Others...

Anti-windup Techniques

(a)

(b)

10

Example: DC Motor Control with Saturation

Download motorPIsaturation.mdl motorPIantiwind.mdl

Goals for this lecture (MM7)

Some **practical issues** when developing a PID controler:

- Integral windup & Anti-windup methods
- Derivertive kick
- When to use which controller?
- Operational Amplifier Implementation
- Other tuning methods

Derivative Kick (I)

- $u(t) = T_D \dot{e}(t)$ $D(s) = \frac{U(s)}{E(s)} = T_D s$
- Reducing oscillations in feedback systems is the key advantage of derivative control

However,

- Does not eliminate offset
- Slows the response
 - **Derivative kick**: if we have a setpoint change, a spike will be caused by D controller, which is called derivative kick.

Derivative Kick (II)

$$u(t) = K(e(t) + \frac{1}{T_I} \int_{t_0}^t e(\tau) d\tau + T_D \dot{e}(t)$$
$$D(s) = \frac{U(s)}{E(s)} = K(1 + \frac{1}{T_I s} + T_D s)$$

Derivative kick can be removed by replacing the derivative term with just output (y), instead of (r_{set}-y).

$$u(t) = K(e(t) + \frac{1}{T_I} \int_{t_0}^t e(\tau) d\tau + T_D \dot{y}(t))$$
$$U(s) = K(1 + \frac{1}{T_I s}) E(s) + T_D s Y(s)$$

9/9/2011

Derivative Kick (III)

$$u(t) = K(e(t) + \frac{1}{T_I} \int_{t_0}^t e(\tau) d\tau + T_D \dot{e}(t)$$
$$D(s) = \frac{U(s)}{E(s)} = K(1 + \frac{1}{T_I s} + T_D s)$$

Derivative kick can be reduced by introducing a
lowpass filter before the set-point enters the system
The bandwidth of the filter should be much larger
than the closed-loop system's bandwidth

$$\mathbf{R(s)} \rightarrow \mathbf{filter} \stackrel{+}{\rightarrow} \underbrace{E(s)}_{\mathbf{K(1+1/T_is+T_Ds)}} \stackrel{\text{Plant}}{\longrightarrow} \underbrace{G(s)}_{\mathbf{G(s)}} \stackrel{\text{Y(s)}}{\longrightarrow} Y(s)$$

Goals for this lecture (MM7)

Some **practical issues** when developing a PID controler:

- Integral windup & Anti-windup methods
- Derivertive kick
- When to use which controller?
- Operational Amplifier Implementation
- Other tuning methods

When to use which controller?

	Р	Ι	D	PI	PID
Estimate	present	back	forward	Present & back	All time
LStimate	Systems with	Not often used	Not used alone	Often used	Often used,
	slow responses,	alone, as is too	because is too		most robust, but
When	tolerant to	slow	sensitive to		can be noise
to use	offset		noise and does		sensitive
See.			not have		
			setpoint		
	Example use:	Example use:	Example use:	Example use:	Examples:
	float valves,	used for very	none	thermostats,	Cases where
Examples	thermostats,	noisy systems		flow control,	the system has
Sec. 1	humidistat.			pressure control	inertia that
1.200					could get out of
2.200					hand:
and a second					temperature and
					concentration
12					measurements
					on a reactor for
and the					example.
3. 10 B					Avoid runaway.

¹/₄ decay ratio is not conservative standard (too oscillatory).

• Change set point from 39 to 42% CO

- •Observe delay (0.8)
- Observe max slope of response at T=27

Slope=

$$\frac{(140 - 139)}{(26.2 - 27.5)} = -0.77$$

Kmax= output change/ Input change=k1/k2

$$\frac{-0.77}{3} = -0.26$$

Example from http://www.controlguru.com

9/9/2011

Classical Control

Goals for this lecture (MM7)

Some **practical issues** when developing a PID controler:

- Integral windup & Anti-windup methods
- Derivertive kick
- When to use which controller?
- Op-Amp Implementation
- Other tuning methods

Op-Amp Implementation (I)

PD controller with $G_c(s) \stackrel{\textbf{Q}}{\Rightarrow} \frac{R_4 R_2}{R_3 R_1} (R_1 C_1 s + 1)$

Op-Amp Implementation (II)

Op-Amp Implementation (III)

PID controller with $G_c(s) = \frac{R_4(R_1C_1s+1)(R_2C_2s+1)}{R_3R_1C_2s}$

Goals for this lecture (MM7)

Some **practical issues** when developing a PID controler:

- Integral windup & Anti-windup methods
- Derivertive kick
- When to use which controller?
- Op-Amp Implementation
- Other PID tuning methods

Controller Synthesis - Time Domain

Time-domain techniques can be classified into two groups:
Criteria based on a few points in the response settling time, overshoot, rise time, decay ratio, settling time

Criteria based on the entire response, or integral criteria

Cohen-Coon Tuning Method

Pre-condition: first-order system with some time delay

 $G(s) = \frac{Ke^{-\theta s}}{\tau s + 1}$

(1st order)

Objective: ¹/₄ decay ratio & minimum offset

	k _c	Ti	T⊳
Ρ	$\frac{1}{k_p}\frac{\tau}{\theta}(1+\frac{\theta}{3\tau})$		
PI	$\frac{1}{k_p} \frac{\tau}{\theta} (\frac{9}{10} + \frac{\theta}{12\tau})$	$\theta \frac{30 + 3(\theta / \tau)}{9 + 20(\theta / \tau)}$	
PID	$\frac{1}{k_p}\frac{\tau}{\theta}(\frac{4}{3} + \frac{\theta}{4\tau})$	$\theta \frac{32 + 6(\theta / \tau)}{13 + 8(\theta / \tau)}$	$\theta \frac{4}{11 + 2(\theta / \tau)}$

In the table k_p is the process gain, τ the process time constant and θ the process time delay.

Comparison of Ziegler-Nichols and Cohen-Coon Equations for Controller Tuning (1940's, 50's)

Controller	Ziegler-Nichols	Cohen-Coon	
Proportional	$KK_{C} = \left(\tau / \theta \right)$	$KK_{C} = \left(\frac{\tau}{\theta}\right) + \frac{1}{3}$	
Proportional +	$KK_C = 0.9 \left(\frac{\tau}{\theta} \right)$	$KK_C = 0.9\left(\frac{\tau}{\theta}\right) + 0.083$	
Integral	$\frac{\tau_I}{\tau} = 3.33 \left(\frac{\theta}{\tau} \right)$	$\frac{\tau_{I}}{\tau} = \frac{\theta \left[3.33 + 0.33 \left(\frac{\theta}{\tau} \right) \right]}{1.0 + 2.2 \left(\frac{\theta}{\tau} \right)}$	
Proportional +	$KK_{C} = 1.2 \left(\tau / \theta \right)$	$KK_{C} = 1.35 \left(\frac{\tau}{\theta} \right) + 0.270$	
Integral + Derivative	$\frac{\tau_{I}}{\tau} = 2.0 \left(\frac{\theta}{\tau} \right)$	$\frac{\tau_{I}}{\tau} = \frac{\theta \left[32 + 6 \left(\frac{\theta}{\tau} \right) \right]}{13 + 8 \left(\frac{\theta}{\tau} \right)}$	
	$\frac{\tau_D}{\tau} = 0.5 \left(\frac{\theta}{\tau} \right)$	$\frac{\tau_D}{\tau} = \frac{0.37 \left(\theta/\tau\right)}{1.0 + 0.2 \left(\theta/\tau\right)}$	

These methods are not suitable for systems where there is zero(s) or virtually no time delay! Classical Control

 $G(s) = \frac{Ke^{-\theta s}}{\tau s + 1}$ (1st order)

FORTD Model Approximation

Motivation:

many empirical PID tuning methods are based on first-order system with time delay

FORTD model approximation

- System identification method
- Matlab: ident

Other Criteria for Performance

- 1. Integral of square error (ISE) $ISE = \int_{0}^{\infty} [e(t)]^2 dt$
- 2. Integral of absolute value of error (IAE) IAE = $\int_{0}^{\infty} |e(t)| dt$
- 3. Time-weighted IAE ITAE = $\int_{n}^{\infty} t |e(t)| dt$

Design: Pick controller parameters to minimize integral.

IAE allows larger deviation than ISE (smaller overshoots)
ISE longer settling time
ITAE weights errors occurring later more heavily

Approximate optimum tuning parameters are correlated with K, θ , τ ...

Table 12.3 Controller Design Relations Based on the ITAE Performance Index and a First-Order plus Time-Delay Model

Type of Input	Type of Controller	Mode	Α	В
Load	PI	Р	0.859	-0.977
		I	0.674	-0.680
Load	PID	Р	1.357	-0.947
	3	I	0.842	-0.738
		D	0.381	0.995
Set point	PI	Р	0.586	-0.916
		I	1.03 ^b	-0.165 ^b
Set point	PID	Р	0.965	-0.85
		I	0.796 ^b	· -0.1465 ^b
		D	0.308	0.929

*Design relation: $Y = A(\theta/\tau)^B$ where $Y = KK_c$ for the proportional mode, τ/τ_I for the integral mode, and τ_D/τ for the derivative mode.

^bFor set-point changes, the design relation for the integral mode is $\tau/\tau_1 = A + B(\theta/\tau)$. [8]

MM7 Exercise

continue MM6 execise: Design a P, PI, PID controller for the following DC motor speed control, According to quarter decay method.

Implement the above system with an actuator saturation in simulink model with $u_{max}=2$, $u_{min}=-2$. Design an integrator antiwindup strategy for your designed PI controller.

Classical Control