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MM9 Frequency Response Analysis 
(II) – Nyquist Diagram

Readings: 
• Section 6.3 (Nyquist stability criterion, page361-375);
• Section 6.4 (stability margins, page 375-383)
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What Have We Talked about in MM8?
 Bode plot analysis 

 How to get a Bode plot
 What we can gain from Bode plot

 How to use bode plot for design purpose 
 Stability margins (Gain margin and phase margin)
 Transient performance 
 Steady-state performance 

 Matlab functions: bode(), margin()
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Goals for this lecture (MM9)
 A design example based on Bode plot 

 Open-loop system feature analysis 
 Bode plot based design

 Nyquist Diagram 
 What’s Nyquist diagram?
 What we can gain from Nyquist diagram

 Matlab functions: nyquist()
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Design Example from MM8:....

 Plant model: G(s)=10/(1.25s+1)
 Requirement: 

 Zero steady state error for step input
 Maximum overshoot must be less than 40%
 Settling time must be less than 0.2 secs

 Is it necessary to develop a controler? 
 If so, how to develop what kind of controller?  

G(s)KD(s)
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Analysis of Open-Loop TF (I)
 Stability - Stable plant?    

 Bode plot
 Nyquist plot (MM11)
 Pole-zero plot
 Routh criterion 

 Software aided analysis
Sysp=tf(10,[1.25 1]), ltiview(Sysp)

num = 10; den = [1.25,1]; 
step(num,den); figure; bode(num, den) 
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Analysis of Open-Loop TF (II)
Open-loop performance 

 Req1: Zero steady state error for step input?

 Req2: Maximum overshoot must be less than 40%?

 Req3: Settling time must be less than 0.2 secs?

num = 10; den = [1.25,1]; step(num,den); figure; bode(num, den) 
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Analysis of Closed-Loop: Steady-State Error (I)

G(s)KD(s)

 Req1: Zero steady state error for step input?

 The steady-state error of the closed-loop system will 
depend on the type of input (step, ramp, etc) as well as the 
(open-loop) system type (0, I, or II)
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Revisit of System Types & Steady State Error (MM5)

 Step Input (R(s) = 1/s): 

 Ramp Input (R(s) = 1/s^2): 

 Parabolic Input (R(s) = 1/s^3): 
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Analysis of Closed-Loop: Steady-State Error(II)
 Plant model: G(s)=10/(1.25s+1)
 Type of the system? 
 The steady-state error for step input: 

e(infty)=1/(1+Kp)=1/(1+10)=0.091
 Add one integrator to the system, what’s the type then?

G(s)=10/s(1.25s+1)
 choose a PI controller - because it will yield zero steady 

state error for a step input. 
 Also, the PI controller has a zero, which we can place. This 

gives us additional design flexibility to help us meet our 
criteria.                KD(s)=K(s+a)/s 
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Analysis of Closed-Loop: Transient Response (I)

G(s)K(s+a)/s

 Req2: Overshoot must be less than 40%?
 Req3: Settling time must be less than 0.2 secs?

MM3 lecture
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Revisit of Transient Response Specification(MM3)
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Analysis of Closed-Loop: Transient Response (II)
 The first thing is to find the damping ratio of the closed-loop 

system corresponding to a percent overshoot of 40%
 the damping ratio of the closed-loop system corresponding 

to this overshoot is approximately 0.28, 
 the phase margin of the open-loop system should be 

approximately (28) 30 degrees

MM8: For second-order systems, the closed-loop 
damping ratio is approximately equal to the phase 
margin divided by 100 if the phase margin is 
between 0 and 60 deg.

ξ≈PM/100

G(s)K(s+a)/s
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Analysis of Closed-Loop: Transient Response (III)
 The seond thing is to find the bandwidth of the closed-loop 

system corresponding to a settling time 0.2 second
 the damping ratio corresponding to 40% overshoot is 

approximately 0.28, 
 The natural frequency of the closed-loop (bandwidth 

frequency) should greater than or equal to 71 rad/sec

 Relationship:  wgc ≤ wbw ≤ 2wgc 

num = [10]; den = [1.25, 1]; numPI = [1]; denPI = [1 0]; 
newnum = conv(num,numPI); newden = conv(den,denPI); 
margin(newnum, newden); grid

G(s)K(s+a)/s
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Control Design: First-Try
 the phase margin of the open-loop system should be 

approximately (28) 30 degrees

 the (gain) crossover frequency should wgc ≥ 71 rad/sec

num = [10]; 
den = [1.25, 1]; 
numPI = [1]; denPI = [1 0]; 
newnum = conv(num,numPI); 
newden = conv(den,denPI); 
margin(newnum, newden); grid

G(s)1/s
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phase margin and wgc are too small!
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Control Design: Tuning PI controller (I)
 Add gain and phase with a zero. Let's place the zero at -5 and 

see what happens 

num = [10]; den = [1.25, 1]; 
numPI = [1 5]; denPI = [1 0]; 
newnum = 
conv(num,numPI); 
newden = conv(den,denPI); 
margin(newnum, newden); 
grid

G(s)1(s+5)/s

MM5: An additional zero in the left half-plane will increase the overshoot
If the zero is within  a factor of 4 of the real part of the complex poles 
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Control Design: Tuning PI controller (II)
 try to get a larger crossover frequency with satisfactory phase 

margin. Let's try to increase the gain to 10

num = [10]; den = [1.25, 1]; 
numPI = 10*[1 5]; denPI = [1 0]; 
newnum = conv(num,numPI); 
newden = conv(den,denPI); 
margin(newnum, newden); grid

G(s)K(s+a)/s

MM8: Adding gain only shifts the magnitude plot up. 
Finding the phase margin is simply the matter of finding 
the new cross-over frequency and reading off the phase margin
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Validation of Design 
 [clnum,clden] =cloop(newnum,newden,-1); 

step(clnum,clden) 

G(s)10(s+5)/s
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Goals for this lecture (MM9)
 A design example based on Bode plot 

 Open-loop system feature analysis 
 Bode plot based design

 Nyquist Diagram 
 What’s Nyquist diagram?
 What we can gain from Nyquist diagram

 Matlab functions: nyquist()
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Nyquist Diagram: Motivation

 Motivation:
to predict the stability and performance of a closed-loop 
system by observing its open-loop system’s feautre

 Benefit:
can be used for design purposes regardless of open-loop 
stability (remember that the Bode design methods assume 
that the system is stable in open loop)

 http://www.engin.umich.edu/group/ctm/freq/nyq.html
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Nyquist Diagram: Definition
The Nyquist diagram is a plot of G(j) , where G(s) is the 
open-loop transfer function and  is a vector of frequencies 
which encloses the entire right-half plane

G(j) = |G(j)| eG(j),
 The Nyquist diagram plots the position its the complex 

plane , while the Bode plot plots its magnitude and phase 
separately.
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Nyquist Diagram: Ploting
 Frequency contour 

 if we have open-loop poles or zeros on the jw axis, G(s) 
will not be defined at those points, and we must loop around 
them when we are plotting the contour 

 Matlab function: 
nyquist (0.5,[1 0.5]) 
lnyquist1([1 2], [1 0 0]) 



What’s the Usefulness of Nyquist Diagram

 Predict the Stability of the closed-loop based on open-loop 
plot

 Check the stability margins
 Not limited by the open-loop stability

 How to use that?
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Nyquist Criterion for Stability
The Nyquist criterion states that: 
 P = the number of open-loop (unstable) poles of G(s)H(s) 
 N = the number of times the Nyquist diagram encircles –1

 clockwise encirclements of -1 count as positive 
encirclements 

 counter-clockwise (or anti-clockwise) encirclements of 
-1 count as negative encirclements 

 Z = the number of right half-plane (positive, real) poles of 
the closed-loop system

 The important equation: 
Z = P + N 



Cauchy Criterion - Complex Analysis (I) 
 when taking a closed contour in the complex plane, 

9/9/2011 Classical Control 25



Cauchy Criterion - Complex Analysis (II) 
 when taking a closed contour in the complex plane, and 

mapping it through a complex function G(s)
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Cauchy Criterion - Complex Analysis (III) 
 when taking a closed contour in the complex plane, and 

mapping it through a complex function G(s)
 the number of times (N) that the plot of G(s) encircles the 

origin is equal to the number of zeros of G(s) (Z) enclosed by 
the frequency contour minus the number of poles of G(s) 
enclosed by the frequency contour (P). 

 Encirclements of the origin are counted as positive if they are 
in the same direction as the original closed contour or 
negative if they are in the opposite direction. 

9/9/2011 Classical Control 27

N =  Z - P 



Cauchy Criterion: for feedback Control (I)
 When studying feedback controls, the closed-loop transfer 

function: 
Gcl(s)=G(s)/[1 + G(s)] 

 If 1+ G(s) encircles the origin, then G(s) will enclose the 
point -1

 Since we are interested in the closed-loop stability, we want 
to know if there are any closed-loop poles (zeros of 1 + G(s)) 
in the right-half plane
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Cauchy Criterion: for feedback Control (II)

 Remember from the Cauchy criterion that the number N of 
times that the plot of G(s)H(s) encircles -1 is equal to the 
number Z of zeros of 1 + G(s)H(s) enclosed by the 
frequency contour minus the number P of poles of 1 + 
G(s)H(s) enclosed by the frequency contour (N = Z - P). 

 Keeping careful track of open- and closed-loop transfer 
functions, as well as numerators and denominators, i.e., : 
 the zeros of 1 + G(s)H(s) are the poles of the closed-loop transfer 

function 
 the poles of 1 + G(s)H(s) are the poles of the open-loop transfer 

function. 
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Nyquist Criterion for Stability (repeat)
The Nyquist criterion states that: 
 P = the number of open-loop (unstable) poles of G(s)H(s) 
 N = the number of times the Nyquist diagram encircles –1

 clockwise encirclements of -1 count as positive 
encirclements 

 counter-clockwise (or anti-clockwise) encirclements of 
-1 count as negative encirclements 

 Z = the number of right half-plane (positive, real) poles of 
the closed-loop system

 The important equation: 
Z = P + N 



Nyquist Criterion:  A Simple Example (I)
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Nyquist Criterion:  A Simple Example (II)
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Nyquist Criterion for Control Design 
 The Nyquist criterion states that: if Z = P + N is a positive, 

nonzero number, the closed-loop system is unstable
 Example: 

Look for: the range of gains that will make this 
system stable in the closed loop

G=tf([ 1 10 24], [ 1 -8 15]) 
roots([1 -8 15]) 
nyquist([ 1 10 24], [ 1 -8 15])
nyquist(20*[ 1 10 24], [ 1 -8 15]) 
nyquist(0.5*[ 1 10 24], [ 1 -8 15])  
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Nyquist Diagram – Gain Margin
 First of all, let's say that 

we have a system that is 
stable if there are no 
Nyquist encirclements of 
–1

 the gain margin as the 
change in open-loop 
gain expressed in 
decibels (dB), required 
at 180 degrees of phase 
shift to make the system 
unstable

nyquist (50, [1 9 30 40 ])
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Nyquist Diagram – Phase Margin
 First of all, let's say that 

we have a system that is 
stable if there are no 
Nyquist encirclements of 
–1

 the phase margin as 
the change in open-
loop phase shift 
required at unity gain 
to make a closed-loop 
system unstable. 

nyquist (50, [1 9 30 40 ])
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A Real Case Study:

Active Noise Reduction

-for  a High Speed CD-ROM System

Cooperated with B&O A/s
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Active and Passive Approaches for ANR

The effective areas of passive and active reduction:
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Feedback ANR
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Testing facility
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3 Controller Design – Test

Mic.
Amp. w.
Band-
pass

PID
Band-
pass-
filter

Ampli-
fier

Signal
generator
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Modeling - Verification of loudspeaker

Frequency response from 
datasheet

Frequency response 
from bodeplot taken 
on model
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Frequency response of estimated and mathematical model

Modeling - Acoustic Duct

Impedance Verification: 
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Controller Design – Simulation
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Another Designed Controller

Figure 28: The result of tuning the Gain-Lag-Lead
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Controller for CD-ROM Noise
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Summary of MM 8-9

 How to use bode plot to 
 Analyze the stability (GM,PM)
 Determine the bandwidth
 Determine the transient response
 Determine the system types and steady-state errors

 How to use nyquist diagram 
 Determine the stability
 Determine the GM,PM


