MM9 Frequency Response Analysis (II) – Nyquist Diagram

Readings:

- Section 6.3 (Nyquist stability criterion, page361-375);
- Section 6.4 (stability margins, page 375-383)

1

What Have We Talked about in MM8?

Bode plot analysis

- How to get a Bode plot
- What we can gain from Bode plot
- How to use bode plot for design purpose
 - Stability margins (Gain margin and phase margin)
 - Transient performance
 - Steady-state performance
- Matlab functions: bode(), margin()

Goals for this lecture (MM9)

- A design example based on Bode plot
 - Open-loop system feature analysis
 - Bode plot based design
 - Nyquist Diagram
 - What's Nyquist diagram?
 - What we can gain from Nyquist diagram
 - Matlab functions: nyquist()

Design Example from MM8:....

- Plant model: G(s)=10/(1.25s+1)
- Requirement:
 - Zero steady state error for step input
 - Maximum overshoot must be less than 40%
 - Settling time must be less than 0.2 secs
- Is it necessary to develop a controler?
- If so, how to develop what kind of controller?

Analysis of Open-Loop TF (I)

- Stability Stable plant?
 - Bode plot
 - Nyquist plot (MM11)
 - Pole-zero plot
 - Routh criterion
- Software aided analysis

Sysp=tf(10,[1.25 1]), **ltiview**(Sysp) num = 10; den = [1.25,1]; step(num,den); figure; bode(num, den)

Analysis of Open-Loop TF (II)

Open-loop performance

- **Req1:** Zero steady state error for step input?
- Req2: Maximum overshoot must be less than 40%?
- **Req3:** Settling time must be less than 0.2 secs?

num = 10; den = [1.25,1]; step(num,den); figure; bode(num, den)

Analysis of Closed-Loop: Steady-State Error (I)

Req1: Zero steady state error for step input?

The steady-state error of the closed-loop system will depend on the type of input (step, ramp, etc) as well as the (open-loop) system type (0, I, or II)

Classical Control

Revisit of System Types & Steady State Error (MM5)

Step Input (R(s) = 1/s):
$$e(\infty) = \frac{1}{1 + \lim_{s \to 0} G(s)} = \frac{1}{1 + K_p} \Longrightarrow K_p = \lim_{s \to 0} G(s)$$

Ramp Input (R(s) = 1/s^2): $e(\infty) = \frac{1}{\lim_{s \to 0} sG(s)} = \frac{1}{K_r} \Longrightarrow K_r = \lim_{s \to 0} sG(s)$

Parabolic Input (R(s) = 1/s^3):

$$e(\infty) = \frac{1}{\lim_{s \to 0} s^2 G(s)} = \frac{1}{K_s} \Rightarrow K_s = \lim_{s \to 0} s^2 G(s)$$

Analysis of Closed-Loop: Steady-State Error(II)

- Plant model: G(s)=10/(1.25s+1)
- **Type** of the system?
- The steady-state error for step input:

e(infty)=1/(1+Kp)=1/(1+10)=0.091

- Add one integrator to the system, what's the type then? G(s)=10/s(1.25s+1)
- choose a PI controller because it will yield zero steady state error for a step input.
- Also, the PI controller has a zero, which we can place. This gives us additional design flexibility to help us meet our criteria.
 KD(s)=K(s+a)/s

Analysis of Closed-Loop: Transient Response (I)

Req2: Overshoot must be less than 40%?

Req3: Settling time must be less than 0.2 secs?

$$G(s) = \frac{\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2}$$
Revisit of Transient Response Specification(MM3)
$$I_r \equiv \frac{1.8}{\omega_n}$$

$$I_r \equiv \frac{4.6}{\zeta\omega_n} \equiv \frac{4.6}{\sigma}$$

$$I_r \equiv \frac{4.6}{\zeta\omega_n} \equiv \frac{4.6}{\sigma}$$

$$I_r \equiv \frac{4.6}{\zeta\omega_n} \equiv \frac{4.6}{\sigma}$$

$$I_r \equiv \frac{5\%, \quad \zeta = 0.7}{16\%, \quad \zeta = 0.5}$$

$$I_r \equiv \frac{\pi}{\omega_d}, \quad \omega_d = \omega_n \sqrt{1 - \zeta^2}$$
Rise time $T_r = \frac{\pi - \phi}{\omega_d}$
Peak time $T_p = \frac{\pi}{\omega_d}$
Settling time $T_s \approx \frac{4}{\xi\omega_n}$
Overshoot $O_p = e^{-\frac{\xi\pi}{\sqrt{1-\xi^2}}}$
11

Analysis of Closed-Loop: Transient Response (II)

- The first thing is to find the damping ratio of the closed-loop system corresponding to a percent **overshoot of 40%**
- the damping ratio of the closed-loop system corresponding to this overshoot is approximately 0.28,
- the **phase margin** of the open-loop system should be approximately (28) **30 degrees**

MM8: For second-order systems, the closed-loop damping ratio is approximately equal to the phase margin divided by 100 if the phase margin is between 0 and 60 deg. $\epsilon \approx PM/100$

Rise time
$$T_r = \frac{\pi - \phi}{\omega_d}$$

Peak time $T_p = \frac{\pi}{\omega_d}$
Settling time $T_s \approx \frac{4}{\xi \omega_n}$
Overshoot $O_p = e^{-\frac{\xi \pi}{\sqrt{1-\xi^2}}}$

K(s+a)/s

G(s)

9/9/2011

Analysis of Closed-Loop: Transient Response (III)

K(s+a)/s

Rise time $T_r = \frac{\pi - \phi}{\omega_d}$

Overshoot $O_p = e^{-\frac{\xi\pi}{\sqrt{1-\xi^2}}}$

G(s)

- The seond thing is to find the bandwidth of the closed-loop system corresponding to a **settling time 0.2 second**
- the damping ratio corresponding to 40% overshoot is approximately 0.28,
- The natural frequency of the closed-loop (bandwidth frequency) should greater than or equal to **71 rad/sec**

num = [10]; den = [1.25, 1]; numPI = [1]; denPI = [1 C newnum = conv(num,numPI); newden = conv(den,de margin(newnum, newden); grid Settling time $T_s \approx \frac{4}{\xi\omega_n}$

9/9/2011

Control Design: First-Try

- the phase margin of the open-loop system should be approximately (28) 30 degrees
- the (gain) crossover frequency should $Wgc \ge 71$ rad/sec

num = [10]; den = [1.25, 1]; numPI = [1]; denPI = [1 0]; newnum = conv(num,numPI); newden = conv(den,denPI); margin(newnum, newden); grid

Control Design: Tuning PI controller (I)

 Add gain and phase with a zero. Let's place the zero at -5 and see what happens

MM5: An additional zero in the left half-plane will increase the overshoot If the zero is within a factor of 4 of the real part of the complex poles

```
num = [10]; den = [1.25, 1];
numPI = [1 5]; denPI = [1 0];
newnum =
conv(num,numPI);
newden = conv(den,denPI);
margin(newnum, newden);
grid
```

$$\longrightarrow 1(s+5)/s \rightarrow G(s)$$

9/9/2011

Control Design: Tuning PI controller (II)

try to get a larger crossover frequency with satisfactory phase margin. Let's try to increase the gain to 10

MM8: Adding gain only shifts the magnitude plot up. Finding the phase margin is simply the matter of finding the new cross-over frequency and reading off the phase margin

num = [10]; den = [1.25, 1]; numPI = 10*[1 5]; denPI = [1 0]; newnum = conv(num,numPI); newden = conv(den,denPI); margin(newnum, newden); grid

$$\longrightarrow \mathbf{K(s+a)/s} \rightarrow \mathbf{G(s)} \longrightarrow \mathbf{K(s+a)/s} \rightarrow \mathbf{G(s)} \longrightarrow \mathbf{K(s+a)/s} \rightarrow \mathbf{G(s)} \longrightarrow \mathbf{K(s+a)/s} \rightarrow \mathbf{K(s+a)/s$$

Validation of Design

 [clnum,clden] =cloop(newnum,newden,-1); step(clnum,clden)

Classical Control

Goals for this lecture (MM9)

- A design example based on Bode plot
 - Open-loop system feature analysis
 - Bode plot based design
- Nyquist Diagram
 - What's Nyquist diagram?
 - What we can gain from Nyquist diagram
- Matlab functions: nyquist()

Nyquist Diagram: Motivation

Motivation:

to predict the stability and performance of a closed-loop system by observing its open-loop system's feautre

Benefit:

can be used for design purposes regardless of open-loop stability (remember that the Bode design methods assume that the system is stable in open loop)

http://www.engin.umich.edu/group/ctm/freq/nyq.html

Nyquist Diagram: Definition

The Nyquist diagram is a plot of $G(j\Omega)$, where G(s) is the open-loop transfer function and Ω is a vector of frequencies which encloses the entire right-half plane

$G(j\Omega) = |G(j\Omega)| e^{\triangleleft G(j\Omega)},$

The Nyquist diagram plots the position its the complex plane, while the Bode plot plots its magnitude and phase separately.

Nyquist Diagram: Ploting

Frequency contour

- if we have open-loop poles or zeros on the jw axis, G(s) will not be defined at those points, and we must loop around them when we are plotting the contour
- Matlab function: nyquist (0.5,[1 0.5]) Inyquist1([1 2], [1 0 0])

9/9/2011

Classical Control

What's the Usefulness of Nyquist Diagram

- Predict the Stability of the closed-loop based on open-loop plot
- Check the stability margins
- Not limited by the open-loop stability
- How to use that?

Nyquist Criterion for Stability

The Nyquist criterion states that:

- P = the number of open-loop (unstable) poles of G(s)H(s)
- N = the number of times the Nyquist diagram encircles -1
 - clockwise encirclements of -1 count as positive encirclements
 - counter-clockwise (or anti-clockwise) encirclements of
 -1 count as negative encirclements
- Z = the number of right half-plane (positive, real) poles of the closed-loop system
- The important equation:

Z = P + N

Cauchy Criterion - Complex Analysis (I)

when taking a closed contour in the complex plane,

Cauchy Criterion - Complex Analysis (II)

when taking a closed contour in the complex plane, and mapping it through a complex function G(s)

If F(s) is analytic along the path Γ (no poles of F(s) on Γ) and s starts at s = s₁ and traces a closed path terminating at s₁, then F(s) will trace a closed path in the F plane starting at F(s₁) and terminating at F(s₁).

Cauchy Criterion - Complex Analysis (III)

- when taking a closed contour in the complex plane, and mapping it through a complex function G(s)
 - the number of times (**N**) that the plot of G(s) encircles the origin is equal to the number of zeros of G(s) (**Z**) enclosed by the frequency contour minus the number of poles of G(s) enclosed by the frequency contour (**P**).

N = Z - P

Encirclements of the origin are counted as positive if they are in the same direction as the original closed contour or negative if they are in the opposite direction.

Cauchy Criterion: for feedback Control (I)

When studying feedback controls, the closed-loop transfer function:

Gcl(s)=G(s)/[1+G(s)]

- If 1+ G(s) encircles the origin, then G(s) will enclose the point -1
- Since we are interested in the closed-loop stability, we want to know if there are any closed-loop poles (zeros of 1 + G(s)) in the right-half plane

Cauchy Criterion: for feedback Control (II)

- Remember from the Cauchy criterion that the number N of times that the plot of G(s)H(s) encircles -1 is equal to the number Z of zeros of 1 + G(s)H(s) enclosed by the frequency contour minus the number P of poles of 1 + G(s)H(s) enclosed by the frequency contour (N = Z P).
- Keeping careful track of open- and closed-loop transfer functions, as well as numerators and denominators, i.e., :
 - the zeros of 1 + G(s)H(s) are the poles of the closed-loop transfer function
 - the poles of 1 + G(s)H(s) are the poles of the open-loop transfer function.

Nyquist Criterion for Stability (repeat)

The Nyquist criterion states that:

- P = the number of open-loop (unstable) poles of G(s)H(s)
- N = the number of times the Nyquist diagram encircles -1
 - clockwise encirclements of -1 count as positive encirclements
 - counter-clockwise (or anti-clockwise) encirclements of
 -1 count as negative encirclements
- Z = the number of right half-plane (positive, real) poles of the closed-loop system
- The important equation:

Z = P + N

Nyquist Criterion: A Simple Example (I) A Simple Example

• Consider a system with the loop TF

Nyquist Criterion: A Simple Example (II) $_{GH(s) = \frac{K}{s(s+a)}}$

- The number of encirclements of the -1 point in the *GH*-plane is zero, N = 0.
- The number of poles of the loop transfer function *GH*(*s*) in the RHS, is zero (*P* = 0). Note: the Nyquist path excludes the pole at the origin.
- Therefore, the number of poles of the closedloop system = the zeroes of 1 + GH(s), in the RHS, is Z = N + P = 0 + 0 = 0.
- The closed-loop system is stable.

Nyquist Criterion for Control Design

- The Nyquist criterion states that: if Z = P + N is a positive, nonzero number, the closed-loop system is unstable
- **Example:**

Look for: the range of gains that will make this

Nyquist Diagram – Gain Margin

- First of all, let's say that we have a system that is stable if there are no Nyquist encirclements of -1
 - the gain margin as the
 change in open-loop
 gain expressed in
 decibels (dB), required
 at 180 degrees of phase
 shift to make the system
 unstable

nyquist (50, [1 9 30 40])

9/9/2011

Nyquist Diagram – Phase Margin

- First of all, let's say that we have a system that is stable if there are no Nyquist encirclements of -1
 - the phase margin as
 the change in openloop phase shift
 required at unity gain
 to make a closed-loop
 system unstable.

nyquist (50, [1 9 30 40])

9/9/2011

noise	$\bigcirc \bigcirc$
anti noise	\mathcal{N}
noise after cancellation	

A Real Case Study:

Active Noise Reduction -for a High Speed CD-ROM System Cooperated with B&O A/s

Classical Control

Active and Passive Approaches for ANR

Testing facility

Modeling - Verification of loudspeaker

Frequency response from datasheet

Frequency response from bodeplot taken on model

Classical Control

Modeling - Acoustic Duct

Controller Design – Simulation

9/9/2011

Classical Control

Controller for CD-ROM Noise

9/9/2011

Classical Control

Summary of MM 8-9

- How to use bode plot to
 - Analyze the stability (GM,PM)
 - Determine the bandwidth
 - Determine the transient response
 - Determine the system types and steady-state errors
- How to use nyquist diagram
 - Determine the stability
 - Determine the GM,PM