MM Frequency Response Analysis
(I1I) — Nyquist Diagram
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Readings:

« Section 6.3 (Nyquist stability criterion, page361-375);
- Section 6.4 (stability margins, page 375-383)
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What Have We Talked about in MMS8?

m Bode plot analysis
How to get a Bode plot
What we can gain from Bode plot

m  How to use bode plot for design purpose
Stability margins (Gain margin and phase margin)
Transient performance

Steady-state performance

m  Matlab functions: bode(), margin()

9/9/2011 Classical Control



.
e

Goals for this lecture (MM9)

m A design example based on Bode plot
Open-loop system feature analysis
Bode plot based design

m  Nyquist Diagram
What’s Nyquist diagram?

What we can gain from Nyquist diagram

m  Matlab functions: nyquist()

9/9/2011 Classical Control
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Design Example from MMS.....

G——KD(s)— G(9)

m  Plant model: G(s)=10/(1.25s+1)

m  Requirement:
Zero steady state error for step input
Maximum overshoot must be less than 40%
Settling time must be less than 0.2 secs

m Is it necessary to develop a controler?
m If so, how to develop what kind of controller?

9/9/2011 Classical Control
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Analysis of Open_Lb T F(I)

m Stability - Stable plant?
Bode plot
Nyquist plot (MM11)
Pole-zero plot
Routh criterion
m Software aided analysis
Sysp=tf(10,[1.25 1]), Itiview(Sysp)
num = 10; den = [1.25,1];
step(num,den); figure; bode(num, den)

9/9/2011 Classical Control
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Analysis of Open-Loop TF (II)
Open-loop performance
m  Reql: Zero steady state error for step input?

m  Req2: Maximum overshoot must be less than 40%7?

m  Req3: Settling time must be less than 0.2 secs?

num = 10; den = [1.25,1]; step(num,den); figure; bode(num, den)
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Analysis of Closed-Loop: Steady-State Error (1)

»O
A

A 4
A 4

KD(s)— G(s) ——

m Reql: Zero steady state error for step input?

m The steady-state error of the closed-loop system will
depend on the type of input (step, ramp, etc) as well as the
(open-loop) system type (O, I, or 1)

R(s), . E(s)

45%— G(s) »C(s)
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Revisit of System Types & Steady State Error (MM5)

1 1

m  Step Input (R(s) = 1/s): el = s =1 ¢ = K, =lim G6)
>0 £
= Ramp Input (R(S) = 1/s72);  e(e) = ——— = — =K, = im sG(s)

"~

11_n3 sG(s)y K

m Parabolic Input (R(s) = 1/s"3): - 1 1

-— =
l,g_r)rgs &(s)y K

o

= K, = lim s*G(s)
>0

R
(s) 3 E(s) G(s) »C(3) Rs), G(s)
> 1+G(8)H(s) - G(s) "o
H(s)

9/9/2011 Classical Control 8
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Analysis of Closed-Loop: Steady-State Erxror(1l)

m  Plant model: G(s)=10/(1.25s+1)
m  Type of the system?
m The steady-state error for step input:
e(infty)=1/(1+Kp)=1/(1+10)=0.091
m  Add one integrator to the system, what’s the type then?
G(s)=10/s(1.25s5+1)

m choose a PI controller - because it will yield zero steady
state error for a step input.

m  Also, the Pl controller has a zero, which we can place. This
gives us additional design flexibility to help us meet our
criteria. KD(s)=K(s+a)/s
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Analysis of Closed-Loop: Transient Response (1)

y

v

> K(s+a)/s/—1 G(S)

>

m Req2: Overshoot must be less than 40%?
m Req3: Settling time must be less than 0.2 secs?

y'(t) E 2

MM3 lecture

0 : : i t

T T T
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Wn

2

2 + 26wps + w2

ot

o & RTINS
RS Beer ™ L oE
i Yy “'{“) .'11
13} ’ ¢ <
L . t 2 V,
28 :
v «p‘ &
I .%, -
{C ),-...-'ﬁ_ _,,':r ..-.-,
‘-‘

Revisit of Transient Response Specification(l\/l M3)
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Classical Con
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M, 5 =116 %  =0.5
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T
t, = W, =, 1-¢°
@ q

Peak time T} = —
W

4
Settling time Ts ~ —
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Analysis of Closed-Loop: Transient Response (1I)

m The first thing is to find the damping ratio of the closed-loop
system corresponding to a percent overshoot of 40%

m the damping ratio of the closed-loop system corresponding

to this overshoot is approximately 0.28,

m the phase margin of the open-loop system should be

approximately (28) 30 degrees

MMS8: For second-order systems, the closed-loop
damping ratio is approximately equal to the phase
margin divided by 100 if the phase margin is
between 0 and 60 deg.

E~PM/100

9/9/2011 Classical Control
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Analysis of Closed-Loop: Transient Response (111)

m The seond thing is to find the bandwidth of the closed-loop
system corresponding to a settling time 0.2 second

m the damping ratio corresponding to 40% overshoot Is

approximately 0.28,

m The natural frequency of the closed-loop (bandwidth
frequency) should greater than or equal to 71 rad/sec

m  Relationship: Wge < Wbw <2Wge

num = [10]; den = [1.25, 1]; numPI| = [1]; denPl =[1 (
newnum = conv(num,numPl); newden = conv(den,d¢
margin(newnum, newden); grid

mT—¢

Wd

Rise time 7T} =

, T
Peak time Ty =—
W

. . 4
Settling time Ts &~ —
f(.dn
__&r
Overshoot Op — e V1-¢2
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Control Design: First-Try
m the phase margin of the open-loop system should be
approximately (28) 30 degrees
m the (gain) crossover frequency should Wgc > 71 rad/sec
100
num = [10]; 0
den = [1.25, 1];
numPI| = [1]; denPI = [1 O]; -100L
newnum = conv(num,numPl); 0
newden = conv(den,denPl);
margin(newnum, newden); grid
o011 Classical Control Frequency (rad/sec) 14
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Magnitude (dB)

Phase (deg)

Bode Diagram

40

Gm = Inf, Pm = 16.096

deg (at 2.7724 rad/sec)
| s
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: : : x & 5 O£ B o > : . Frequency (rad/sec):|3.92 |
~Magnitude (dB):-5.83

Frequency (rad/sec)
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Control Design: Tuning PI controller (I)

m Add gain and phase with a zero. Let's place the zero at -5 and
see what happens

num = [10]; den = [1.25, 1];
numPl =[1 5]; denPI = [1 0]; o 1(s+5)/s
newnum =
conv(num,numPl);

newden = conv(den,denPl);

margin(newnum, newden);
grid

y
v

G(s)

9/9/2011 Classical Control 16



Control Design: Tuning PI controller (11)

m try to get a larger crossover frequency with satisfactory phase
margin. Let's try to increase the gain to 10

num = [10]; den = [1.25, 1];
numPI = 10*[1 5]; denPI = [1 0]; . K(s+a)/s—{ G(5)
newnum = conv(num,numPI);
newden = conv(den,denPl);
margin(newnum, newden); grid

v

»
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10(s+5)/s

1 G(9)

Validation of Design

m [cInum,clden] =cloop(newnum,newden,-1);

step(clnum,clden)

Step Response

- Time (sec): 0.2
. Amplitude: 1.02

. System:sys 8 it ottt i e 4

............................................................
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Time (sec)
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Goals for thls lecture (MM9)

m A design example based on Bode plot
Open-loop system feature analysis
Bode plot based design

m  Nyquist Diagram
What’s Nyquist diagram?

What we can gain from Nyquist diagram

m  Matlab functions: nyquist()

9/9/2011 Classical Control
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Nyquist Diagram: Motivation

m Motivation:

to predict the stability and performance of a closed-loop
system by observing its open-loop system’s feautre

m Benefit:

can be used for design purposes regardless of open-loop
stability (remember that the Bode design methods assume
that the system is stable in open loop)

m  http://www.engin.umich.edu/group/ctm/freq/nyq.html

9/9/2011 Classical Control
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Nyquist Dlagram Deﬁmtlon

The Nyquist diagram is a plot of G(jQ2) , where G(s) Is the
open-loop transfer function and Q is a vector of frequencies
which encloses the entire right-half plane

G(jQ) = |G(jQ)| e<“1,
The Nyquist diagram plots the position its the complex
plane , while the Bode plot plots its magnitude and phase

separately.
10
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Nyquist Diagram: Ploting
B Frequency contour A SectionI: s=pei®; p—0

o 9=-90 — +90
Section Il : s=j0%— joo

SectionIll: s=Re/?: R— e
8=+90 — -90

Section IV : s =—joo — jO-

m If we have open-loop poles or zeros on the jw axis, G(s)
will not be defined at those points, and we must loop around
them when we are plotting the contour

m  Matlab function:
nyquist (0.5,[1 0.5])
Inyquist1([1 2], [1 0 0])

10

Imag Axis
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What’s the Usefulness of Nyquist Diagram

m Predict the Stability of the closed-loop based on open-loop
plot

m  Check the stability margins
= Not limited by the open-loop stability

m How to use that?

9/9/2011 Classical Control 23



R

% jr ":“'i'ﬂ!@

Nyquist Criterion for Stability

The Nyquist criterion states that:
m P =the number of open-loop (unstable) poles of G(s)H(s)
m N =the number of times the Nyquist diagram encircles -1

clockwise encirclements of -1 count as positive
encirclements

counter-clockwise (or anti-clockwise) encirclements of
-1 count as negative encirclements

m Z =the number of right half-plane (positive, real) poles of
the closed-loop system

m The important equation:
Z=P+N

9/9/2011 Classical Control
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Cauchy Criterion - Complex Analysis (1)
m Wwhen taking a closed contour in the complex plane,

* Encirclements in the complex plane.
Im
PathT'1s a

clockwise
encirclement of
point A

. o, Counter-
0' clockwise

encirclement

* Enclosements 1n the complex plane.

Im Im
r The area to the
5 Re = right of the path I’
1s the area
enclosed by T

9/9/2011 Classical Control 25




Cauchy Crltermn Complex AnaIyS|s (I I)

m  when taking a closed contour in the complex plane, and
mapping it through a complex function G(s)

e S-plane — F{(s) complex plane mapping.
— unique Im{F}
- Ky

F(s,)

non unique k

——

F{(s;)

» If F(s) 1s analytic along the path I" (no poles of F(s) on
[) and s starts at s = s, and traces a closed path
terminating at s,, then F{(s) will trace a closed path 1n
the F plane starting at F(s;) and terminating at F{(s,).

9/9/2011 Classical Control
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Cauchy Criterion - Complex Analy5|s (I | I)

when taking a closed contour in the complex plane, and
mapping it through a complex function G(s)

the number of times (N) that the plot of G(s) encircles the
origin is equal to the number of zeros of G(s) (Z) enclosed by
the frequency contour minus the number of poles of G(s)
enclosed by the frequency contour (P).

N=Z-P

Encirclements of the origin are counted as positive if they are
In the same direction as the original closed contour or
negative If they are in the opposite direction.

9/9/2011 Classical Control 27
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Cauchy Criterion: for feedback Control (I)

m  When studying feedback controls, the closed-loop transfer

function:
Gcl(s)=G(s)/[1 + G(9)]

m |If 1+ G(s) encircles the origin, then G(s) will enclose the
point -1

m Since we are interested in the closed-loop stability, we want
to know If there are any closed-loop poles (zeros of 1 + G(S))

In the right-half plane

28
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Cauchy Criterion: for feedback Control (1)

m  Remember from the Cauchy criterion that the number N of
times that the plot of G(s)H(s) encircles -1 is equal to the
number Z of zeros of 1 + G(s)H(s) enclosed by the
frequency contour minus the number P of poles of 1 +
G(s)H(s) enclosed by the frequency contour (N = Z - P).

m Keeping careful track of open- and closed-loop transfer
functions, as well as numerators and denominators, i.e., :

the zeros of 1 + G(s)H(s) are the poles of the closed-loop transfer
function

the poles of 1 + G(s)H(s) are the poles of the open-loop transfer
function.

9/9/2011 Classical Control 29
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Nyquist Criterion for Stability (repeat)

The Nyquist criterion states that:
m P =the number of open-loop (unstable) poles of G(s)H(s)
m N =the number of times the Nyquist diagram encircles -1

clockwise encirclements of -1 count as positive
encirclements

counter-clockwise (or anti-clockwise) encirclements of
-1 count as negative encirclements

m Z =the number of right half-plane (positive, real) poles of
the closed-loop system

m The important equation:
Z=P+N

9/9/2011 Classical Control 30



A Simple Example

* Consider a system with the loop TF

K
s(s +a) Im{GH)}

s-plane GH(s) =

mapping
Pole of

GH\

9/9/2011 Classical Control

GH-plane

31



Nyquist Criterion: A Simple Example (1)

GH(s) = S(S]:' a)

* The number of encirclements of the —1 point in
the GH-plane 1s zero, N = 0.

* The number of poles of the loop transfer
function GH(s) in the RHS, 1s zero (P = 0).
Note: the Nyquist path excludes the pole at the
origin.

» Therefore, the number of poles of the closed-

loop system = the zeroes of 1 + GH(s), in the
RHS,1s Z=N+P =0+0 =0.

* The closed-loop system 1s stable.

9/9/2011 Classical Control 32
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Nyquist Crlterlon for Control Design

m The Nyquist criterion states that: if Z =P + N Is a positive,
nonzero number, the closed-loop system is unstable

s  Example: ,? = -

G(s)

Look for: the range of gains that will make this
system stable In tge closed loop

G=tf([ 1 10 24],[ 1 -8 15])

roots([1 -8 15])

nyquist([ 1 10 24], [ 1 -8 15])

nyquist(20*[ 1 10 24], [ 1 -8 15]) 5 , .

nyquist(0.5*[ 1 10 24], [ 1 -8 15]) -2 1 redakis 2
9/9/2011 Classical Control
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Nyquist Diagram — Gain Margin

m  First of all, let's say that
we have a system that is ?
stable if there are no
Nyquist encirclements of ()
-1 X
m the gain margin as the q 0
o)
E

change in open-loop
gain expressed in

decibels (dB), required Gain Difference

at 180 degrees of phase Before CL Instability

shift to make the system -2 l | .

unstable - - ? | 9
Real AXS

nyquist (50, [1 9 30 40 )
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Nyquist Diagram — Phase Margin

m  First of all, let's say that
we have a system that is
stable if there are no i [ ' ; '
Nyquist encirclements of .
-1

m the phase margin as
the change in open-
loop phase shift
required at unity gain
to make a closed-loop
system unstable. -9

lmag AxXis
-

|
—_—
L]

Rea?Axis
nyquist (50, [1 9 30 40 ])
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Active Noise Reduction
-for a High Speed CD-ROM System
Cooperated with B&O A/s

9/9/2011 Classical Control 36



Active and Passive Approaches for ANR

ACTIVE AND PASSIVE CONTROL ATTENUATION

50 —

dB

31 63 125 250 500 1000 2000 4000 8000

Hz
The effective areas of passive and active reduction:

9/9/2011 Classical Control 37
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Microphone
I
Speaker
Control signal
Error signal
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Classical Control

Error
Microphone

B

Record error
signal with
software on a
PC
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Signal
generator
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Band Mic.
Ampli- Amp. w.
: pass- PID
fier ) Band-
filter
pass

Classical Control
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Modehng erlflcatlon of Ioudspeaker

ohn

110

100

N |
m_,// == | 5
==s | RN

20 50 100 200 500 1k 2k Sk 10k 20k

|

| |

90 '. :
| 1

|

|

0 deg. 30 deg. 60 deg. Impedance

Frequency response from
datasheet

Bode Dlagram
From: In(1)}
50 .
g
45+ System: speaker!
VO In(1) to Out(1)
Frequency (Mz): 504
40 Magnitude (dB): 46.6
1] /
30+
spuurs
to Out(1)
28 mn. .z
' ude (¢B): 21
B — s — e
P
90+ \

ok —
\\--_—-\“
-90 PR JH,%—‘h'
10 10’ 10°

Frequency response
from bodeplot taken
on model
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From: P To: pd

- Impedance Verification: R

10 ~

Phase (deg)
g
1

0 i : PR L LT 0 W S |
! 10

3 4

) 10

10
Frequency (rad/sec)

Frequency response of estimated and mathematical model
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1440

Phase (deg)

720
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Controller Design

Bode Diagram

— Simulation

T T T T T T T T — With ANR
— Without ANR
1 L 1 ] 1 I 1 I 1
T T T T T T T T T =
L 1 L i 1 1 2l : -
100 200 300 400 500 600 700 800 900 1000

Frequency (Hz)

Classical Control
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Another Designed Controller
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D(s)=120- :
s+106 s+6283
Zero/pole plot
Controller 5000 ‘ ‘ +
40
4000
y 3000+
0 2000+
¢
200 b 1000 ®$O
of + + O0g o
- 08 e%
720 : O ® 0
! -1000; Db
540
| 2000} Ogo
360 {1
: _m,
1807777\777777777\7\777 7777777 :77 777777:7 7777777
ol | — Without Controller | 3 777777 | -4000 |
—— With Controller : :
-]_80————L——L—4‘—l—:—‘+a‘—:———————:_————:———:——L—L—:—LL— i | § | | | | | +\
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Controller for CD-ROM Noise

008 T T T T T T T

0.02 =

Amplitude
0 -

-0.08 I I | I L \ | | \
0 0.5 1 15 2 25 3 3.5 4 45 5

Samples ( 44100 samples = 1 sec. ) x10°
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Summary of MM 8-9

m How to use bode plot to
Analyze the stability (GM,PM)
Determine the bandwidth
Determine the transient response
Determine the system types and steady-state errors

m How to use nyquist diagram

Determine the stability
Determine the GM,PM

9/9/2011 Classical Control

46



