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1 Exercise

1. Consider a pendulum system which up-end of the pendulum is pivoted on a fixed surface. Through the
first-principle modeling, a mathematical model can be obtained as

Tc −mglsinθ = Iθ̈, (1)

where Tc is the applied external torque, θ is the pendulum’s deviated angle from the vertical position, I is
the moment of initial of the pendulum, and it can be estimated as I = ml2.

• Is this ODE model (7) linear or nonlinear? and why?

Answer: It is not linear due to the sinusoid function.

• Suppose the motion is small enough that we can let sinθ ≈ θ, get a linear ODE model from (7) based
on this approximation.

Answer: The linearized model is:

Tc −mglθ = Iθ̈. (2)

• Suppose there is no any external force acting on the system, i.e., Tc = 0, but the pendulum has an
initial angle position θ(0) = 0.5rad and initial angular velocity θ̇(0) = 0, can you image the dynamic
behavior of the pendulum?

Answer: The pendulum will have a periodical oscillation with an equal maximal amplitude.

• Based on above assumption, get a quantitative description of the pendulum performance. (Hint: de-
rive the solution of an ODE)

Answer: Based on the linearized system (2), take the Laplace transform on both sides. There is

Is2Θ(s)− sθ(0)− θ̇(0) + mglΘ(s) = 0, (3)

which leads to the following w.r.t. the initial condition θ̇(0) = 0:

Θ(s) =
sθ(0)

Is2 + mgl
, (4)

By taking the inverse Laplace transform, there is

θ(s) = θ(0)cos(

√
g

l
t) = 0.5cos(

√
g

l
t). (5)

• Write a piece of M-file using the ode23 or ode45 solver in Matlab to simulate the considered system
behavior. Compare the simulated result with the theoretical solution you obtained from last question.

Answer:

The main file pendulummain.m:

clear

global g l

g=9.8; l=0.5;
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t0=0; tf=10;

x0=[0.5; 0];

[t,x]=ode23(’pendulum’,[t0 tf],x0);

subplot(1,2,1);

plot(t,x(:,1)); grid

xlabel(’time’); ylabel(’Amplitude’);

subplot(1,2,2);

plot(abs(fft(x(:,1))));

axis([0 100 0 50]); grid;

xlabel(’frequency’); ylabel(’Spectrum Amplitude’);

The own-defined function: pendulum.m:

function xdot=pendulum(t,x)

global g l

xdot=zeros(2,1);

xdot(1)=x(2);

xdot(2)=-g/l * x(1);

The simulation result is shown in the following figure 1.

Figure 1: Simulation and spectrum of the free response of ideal pendulum system

• Regard Tc as the system input and θ as the system output, derive the transfer function of the consid-
ered linear system.

Answer: The transfer function is:

G(s) =
Θ(s)

Tc(S)
=

1

I2s + mgl
. (6)

• What’re the system poles and zeros? what kind of information we can gain by this pole-zero analysis?

Answer: the system poles are: ±
√

g
l
. There is no zero of the considered system. There is a pair of purely

complex poles, thereby we suspect the system has some periodic behavior with the period equalling to
√

g
l
.

• Can you manage to get a Simulink model of this considered system? and simulate it under the con-
dition that θ(0) = 0.5rad, θ̇(0) = 0 and Tc = 0 as well.

Answer: See the following simulink model and simulation result.

• Suppose the system is exposed to some wind disturbance, which can be regarded as an external torque,
denoted as Td, acting on the pendulum at the opposite direction of Tc. Can you extend this consid-
eration into model (7)? so that what kind of system (SISO, SIMO, MISO, MIMO) you obtain?

Answer: The system model (7) will be extended as

Tc −mglsinθ − Td = Iθ̈, (7)
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Figure 2: Simulink model of the nonlinear pendulum system

Figure 3: Simulation result of the free response of nonlinear pendulum system

then we get a MISO system, i.e., 2 inputs (Tc and Td) and 1 output θ.

• Suppose the wind disturbance can be modeled as Td = Kf θ̇, where Kf is some constant value, can you
update the pendulum model and simulate the new system? What a kind of different result do you get,
comparing with the situation where Tf is neglected?

Answer: the system transfer function becomes

G(s) =
Θ(s)

Tc(S)
=

1

I2s + kfs + mgl
. (8)

A new function is defined as pendulumfriction.m:

function xdot=pendulumfriction(t,x)

global g l

xdot=zeros(2,1);

xdot(1)=x(2);

xdot(2)=-g/l * x(1)- 0.2/(0.2*0.52) ∗ x(2);

A simulation result with kf = 0.2 is shown in the following figure 4.

A simulink model can be updated as shown in Fig.5. Clearly, the friction disturbance damps the original
oscillation. You can try to use different kf value to check different damping behaviors (e.g., underdamped,
overdamped, critically damped).

2. Check the modeling of a crane system (or inverted pendulum) studied in Section 2.1 from the CC textbook.
A linearized model can be obtained as

(I + mpl2)θ̈ + mpglθ = −mplẍ

(mt + mp)ẍ + bẋ + mplθ̈ = u
(9)

• By regrading u as system input and θ as system output, derive the transfer function of above system.

• Try to implement a simulink model of the original nonlinear system, i.e.,

(I + mpl2)θ̈ + mpglsinθ = −mplẍcosθ

(mt + mp)ẍ + bẋ + mplθ̈cosθ −mplθ̇2sinθ = u.
(10)

Manage these parts by your group, and the content should be included in your project report.
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Figure 4: Simulation and spectrum of the response of the damped pendulum system

Figure 5: Simulink model of the nonlinear damped pendulum system
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