MM1: Basic Concept (I): **System and its Variables**

- A **system** is a collection of components which are coordinated together to perform a function
- Systems interact with their **environment**. The interaction is defined in terms of **variables**
 - System inputs
 - System outputs
 - Environmental disturbances
 - **Dynamic system** is a systemehose performance couldchange according to time

MM1: Basic Concept (II): Control

- **Control** is a process of causing a system (output) variable to conform to some desired status/value
- Manual Control is a process where the control is handled by human being(s)
- Automatic Control is a control process which involves machines only

9/9/2011

MM1: Control Classification

- Open-loop Control: A control process which does not utilize the feedback mechanism, i.e., the output(s) has no effect upon the control input(s)
- **Closed-loop Control:** A control process which utilizes the feedback mechanism, i.e., the output(s) does have effect upon the control input(s)

MM1: Feedback Control – Block Diagrams

The Goals of this lecture (MM2) ...

- Essentials in using (ordinary) differential equation model
 - Why use ODE model
 - Linear vs. nonlinear ODE models
 - How to solve an ODE
 - Numerical methods (Matlab)
 - Refresh of Laplace transform
 - Key features
 - Transformation from ODE to TF model
- Block diagram transformation
 - Composition /decomposition
 - Signal-flow graph

MM2: ODE Model

• A general ODE model: $a_n \frac{d^n y(t)}{dt^n} + \dots + a_1 \frac{dy(t)}{dt} + a_0 y(t) = b_m \frac{d^m u}{dt^m} + \dots + b_1 \frac{du}{dt} + b_0 u$

- **SISO, SIMO, MISO, MIMO** models
- Linear system, Time-invance, Linear Time-Invarance (LTI)
- Solution of ODE is an explicit description of dynamic behavior
- Conditions for unique solution of an ODE
- Solving an ODE:
 - Time-domain method, e.g., using exponential function
 - Complex-domain method (Laplace transform)
 - Numerical solution CAD methods, e.g., ode23/ode45

MM2: Block diagram Rules

Combining blocks in cascade:

Combining blocks in parallel:

Moving a pickoff point forward:

Moving a pickoff point backward:

9/9/2011

Eliminating a feedback loop:

Moving a summing point backward:

Moving a summing point forward:

Classical Control

MM2: Simulink Block diagram

- System build-up
 - Using TF block
 - Using nonlinear blocks
 - Using math blocks
- Creat subsystems
 - Top-down
 - Bottom-up
- Usage of ode23 & ode45

Goals for this lecture (MM3)

- Time response analysis
 - Typical inputs
 - 1st, 2nd and higher order systems
- Performance specification of time response
 - Transient performance
 - Steady-state performance

Numerical simulation of time response

MM3: Time Response Analysis (II)

Typical inputs: impulse, step and ramp signals

Test signal	u(t)	U(s)
Impulse	$\delta(t)$	1
Step	1	1/s
Ramp	t	$1/s^2$

$$G(s) = \frac{k}{s+p}, \quad \text{pole}: -p, \quad \text{time constant}: \frac{1}{p}$$

$$G(s) = \frac{c}{\tau s+1}, \quad \text{pole}: -\frac{1}{\tau}, \quad \text{time constant}: \tau$$

$$g(t) = ke^{-pt} \quad \text{or} \quad g(t) = \frac{c}{\tau}e^{-\frac{1}{\tau}t}$$

$$G(s) = \frac{\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2}.$$

ξ – damping ratio, a dimensionless factor
ω_n – natural frequency with unit rad/s

Time response = excitation response + initial condition response (free response)

$$\phi = \tan^{-1} \frac{\sqrt{1-\xi^2}}{\xi}, \ \omega_d = \omega \sqrt{1-\xi^2} \qquad G(s) = \frac{\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2}$$

MM3: Performance Specification

9/9/2011

2%

$$t_{r} \cong \frac{1.8}{\omega_{n}}$$

$$t_{s} \cong \frac{4.6}{\zeta \omega_{n}} \cong \frac{4.6}{\sigma}$$

$$M_{p} \cong \begin{cases} 5\%, \quad \zeta = 0.7\\ 16\%, \quad \zeta = 0.5\\ 35\%, \quad \zeta = 0.3 \end{cases}$$

$$t_{p} \cong \frac{\pi}{\omega_{d}}, \quad \omega_{d} = \omega_{n}\sqrt{1-\zeta^{2}}$$
Rise time $T_{r} = \frac{\pi - \phi}{\omega_{d}}$
Peak time $T_{p} = \frac{\pi}{\omega_{d}}$
Detween
Settling time $T_{s} \approx \frac{4}{\xi \omega_{n}}$
Overshoot $O_{p} = e^{-\frac{\xi\pi}{\sqrt{1-\xi^{2}}}}$

12

MM3: Numerical Simulation

- Impulse response: impulse(sys)
- Step response: step(sys)
- Itiview(sys)
- Subplot(m,n,1)

EXAMPLE:

sys1:Sys2:num1=[1];num2=[12];den1=[121];den2=[123];impulse(tf(num1,den1),'r',tf(num2,den2),'b')step(tf(num1,den1),'r',tf(num2,den2),'b')

Time (sec)

Goals for this lecture (MM4)

- System poles vs. time responses
 - Poles and zeros
 - Time responses vs. Pole locations
- Feedback characteristics
 - Characteristics
 - A simple feedback design

Block diagram decomposition (simulink)

MM4 : Poles vs Performance

MM4: First-order System

9/9/2011

Classical Control

MM4: Second-Order System

Sugar and

MM4: Summary of Pole vs Performance

MM4: Plot of Pole Locations

Goals for this lecture (MM5)

- Stability analysis
 - Definition of BIBO
 - Pole locations
 - Routh criteron
- Steady-state errors
 - Final Theorem
 - DC-Gain
 - Stead-state errors
 - Effects of zeros and additional poles

MM5 : BIBO Stability

- A system is said to have bounded input-bounded output (BIBO) stability if every bounded input results in a bounded output (regardless of what goes on inside the system)
- The continuous (LTI) system with impuse response h(t) is BIBO stable if and only if h(t) is absolutely integrallable
- All system poles locate in the left half s-plane asymptotic internal stability
- Routh Criterion: For a stable system, there is no changes in sign and no zeros in the first column of the Routh array

MM5 : Steady-State Error

- **Objective:** to know whether or not the response of a system can approach to the reference signal as time increases
- Assumption: The considered system is stable
- Analysis method: Transfer function + final-value Theorem

$$e(\infty) = \lim_{s \to 0} s(R(s) - Y(s)) = \lim_{s \to 0} s(R(s) - G(s)R(s))$$

= $\lim_{s \to 0} s(1 - G(s))R(s), \quad R(s) = \frac{1}{s}$
= $\lim_{s \to 0} (1 - G(s)) = 1 - G(0)$
> **DC-Gain**

- Position-error constant
- Velocity constant
- Acceleration constant

$$K_{p} = \lim_{s \to 0} G_{o}(s)$$
$$K_{v} = \lim_{s \to 0} sG_{o}(s)$$
$$K_{a} = \lim_{s \to 0} s^{2}G_{o}(s)$$

9/9/2011

MM5 : Effect of Additional Zero & Pole

Step Response

An additional zero in the left half-plane will increase the overshoot If the zero is within a factor of 4 of the real part of the complex poles

An additional zero in the right half-plane will depress the overshoot and may cause the step response to start out in the wrong direction

System: s1

Amplitude: 0.84

2

de

0

9/9/2011

An additional pole in the left half-plane will increase the rise time significantly if the extra pole is within a factor of 4 of the real part of the complex poles

6

Classical Control

Time (sec)

8

10

12

23

4

 $G(s) = \frac{V_o(s)}{V_i(s)} = \frac{1}{RCs + 1}$

BIBO Stability – Execise (I)

 $LC\frac{i^2(t)}{dt^2} + \frac{L}{R}\frac{di(t)}{dt} + i = u(t)$

- Are these systems BIBO stable?
 - Intuitive explanation
 - Theoretical analysis

BIBO Stability – Execise (II)

How about the stability of your project systems?

$$(I + m_p l^2)\ddot{\theta} + m_p g l\theta = -m_p l\ddot{x}$$
$$m_t + m_p)\ddot{x} + b\dot{x} + m_p l\ddot{\theta} = u.$$

$$(I + m_p l^2)\ddot{\theta}' - m_p g l\theta' = m_p l\ddot{x}$$
$$(m_t + m_p)\ddot{x} + b\dot{x} - m_p l\ddot{\theta}' = u.$$

Revisit of example: First-order System (II)

- What's the tpye of original system?
- Derive the transfer function of the closed-loop system
- What's the time constant and DC-gain of the CL system?
- What's the feedforward gain so that there is no steady-state error?

9/9/2011

Classical Control

Goals for this lecture (MM6)

- Definition characterisitc of PID control
 - P- controller
 - PI- controller
 - PID controller
 - Ziegler-Nichols tuning methods
 - Quarter decay ratio method
 - Ultimate sensitivity method

Control objectives

Control is a process of causing a system (output) variable to conform to some desired status/value (**MM1**)

Control Objectives

- **Stable (MM5)**
- Quick responding (MM3, 4)
- Adequate disturbance rejection
- Insensitive to model & measurement errors
- Avoids excessive control action
- Suitable for a wide range of operating conditions
- (extra readings: Goodwin's lecture)

MM6:Characteristics of PID Controllers

- Proportional gain, K_p larger values typically mean faster response. An excessively large proportional gain will lead to process instability and oscillation.
- Integral gain, K_i larger values imply steady state errors are eliminated more quickly. The trade-off is larger overshoot
- Derivative gain, K_d larger values decrease overshoot, but slows down transient response and may lead to instability due to signal noise amplification in the differentiation of the error.

$$R(s) \xrightarrow{+} E(s) \xrightarrow{} K(1+1/T_is+T_Ds) \xrightarrow{} Plant_{G(s)} \xrightarrow{} Y(s)$$
9/9/2011 Classical Control

MM6: **PID Tuning Methods- Trial-Error**

<u>Rules of thumb</u>:

 $K_p > K_i > K_d,$ $K_p \approx (5 \sim 10) K_i,$ $K_i \approx (5 \sim 10) K_d$

• Adavantages: Simple

- Disadvantages:
 - unsatisfactory performance
 - expensive on-site experiment
 - issues of equipment safety

<u>Procedure</u>:

Step 1: Set $K_i = 0$ & $K_d = 0$. Increase K_p from zero;

Step 2: Fix K_p . Increase K_i from zero;

Step 3: Fix K_p & K_i . Increase K_d from zero.

<u>Note</u>: Several iterations of the procedure may be necessary

See Hou Ming's lexture notes

MM6: **PID Tuning – Zieglor Niechols (I)**

Pre-condition: system has no overshoot of step response

MM6: PID Tuning – Zieglor Niechols (II)

Pre-condition: system order > 2

Goals for this lecture (MM7)

Some **practical issues** when developing a PID controler:

- Integral windup & Anti-windup methods
- Derivertive kick
- When to use which controller?
- Operational Amplifier Implementation
- Other tuning methods

Anti-windup Techniques

(a)

(b)

34

Derivative Kick

$$u(t) = K(e(t) + \frac{1}{T_I} \int_{t_0}^t e(\tau) d\tau + T_D \dot{y}(t))$$

$$U(s) = K(1 + \frac{1}{T_I s})E(s) + T_D sY(s)$$

- **Derivative kick**: if we have a setpoint change, a spike will be caused by D controller, which is called derivative kick.
- Derivative kick can be removed by replacing the derivative term with just output (y), instead of (r_{set}-y)
- Derivative kick can be reduced by introducing a lowpass filter before the set-point enters the system
- The bandwidth of the filter should be much larger than the closed-loop system's bandwidth

Cohen-Coon Tuning Method

Pre-condition: first-order system with some time delay

 $G(s) = \frac{Ke^{-\theta s}}{\tau s + 1}$

(1st order)

Objective: ¹/₄ decay ratio & minimum offset

	kc	Ti	T⊳
P	$\frac{1}{k_p} \frac{\tau}{\theta} (1 + \frac{\theta}{3\tau})$		
PI	$\frac{1}{k_p} \frac{\tau}{\theta} (\frac{9}{10} + \frac{\theta}{12\tau})$	$\theta \frac{30 + 3(\theta / \tau)}{9 + 20(\theta / \tau)}$	
PID	$\frac{1}{k_p} \frac{\tau}{\theta} (\frac{4}{3} + \frac{\theta}{4\tau})$	$\theta \frac{32 + 6(\theta / \tau)}{13 + 8(\theta / \tau)}$	$\theta \frac{4}{11+2(\theta / \tau)}$

In the table k_p is the process gain, τ the process time constant and θ the process time delay.

Table 12.3 Controller Design Relations Based on the ITAE Performance Index and a First-Order plus Time-Delay Model

Type of Input	Type of Controller	Mode	Α	В
Load	PI	Р	0.859	-0.977
		I	0.674	-0.680
Load	PID	Р	1.357	-0.947
	3	I	0.842	-0.738
		D	0.381	0.995
Set point	PI	Р	0.586	-0.916
		I	1.03 ^b	-0.165 ^b
Set point	PID	Р	0.965	-0.85
		I	0.796 ^b	· -0.1465 ^b
		D	0.308	0.929

*Design relation: $Y = A(\theta/\tau)^B$ where $Y = KK_c$ for the proportional mode, τ/τ_I for the integral mode, and τ_D/τ for the derivative mode.

^bFor set-point changes, the design relation for the integral mode is $\tau/\tau_1 = A + B(\theta/\tau)$. [8]

Goals for this lecture (MM8)

Essentials for **frequency domain** design methods – **Bode plot**

Bode plot analysis

- How to get a Bode plot
- What we can gain from Bode plot
- How to use bode plot for design purpose
 - Stability margins (Gain margin and phase margin)
 - Transient performance
 - Steady-state performance
- Matlab functions: bode(), margin()

- The frequency response $G(j\Omega) (=G(s)|_{s=j\Omega})$ is a representation of the system's response to sinusoidal inputs at varying frequencies $G(j\Omega) = |G(j\Omega)| e^{\langle G(j\Omega) \rangle},$
- Input x(n) and output y(n) relationship

 $|\mathbf{Y}(\mathbf{j}\Omega)| = |\mathbf{H}(\mathbf{j}\Omega)| |\mathbf{X}(\mathbf{j}\Omega)|$

 $\triangleleft Y(j\Omega) = \triangleleft H(j\Omega) + \triangleleft X(j\Omega)$

The frequency response of a system can be viewed

- via the **Bode plot** (H.W. Bode 1932-1942)
- via the Nyquist diagram

Open-Loop Transfer Function

Motivation

Predict the closed-loop system's properties using the openloop system's frequency response

Open-loop TF (Loop gain) :L(s)=KD(s)G(s)

Closed-loop: $G_{cl}(s)=L(s)/(1+L(s))$, or $G_{cl}(s)=G(s)/(1+L(s))$

Analog and Digital Control

Definition of Phase Margin (PM)

- Bode plot of the openloop TF
 - The **phase margin** is the difference in phase between the phase curve and -180 deg at the point corresponding to the frequency that gives us a gain of 0dB (the **gain cross over frequency**, Wgc).

Remarks of Using Bode Plot

- Precondition: The system must be stable in open loop if we are going to design via Bode plots
- Stability: If the gain crossover frequency is less than the phase crossover frequency (i.e. Wgc < Wpc), then the closedloop system will be stable
- Damping Ratio: For second-order systems, the closed-loop damping ratio is approximately equal to the phase margin divided by 100 if the phase margin is between 0 and 60 deg
- A very rough estimate that you can use is that the bandwidth is approximately equal to the **natural frequency**

Goals for this lecture (MM9)

- A design example based on Bode plot
 - Open-loop system feature analysis
 - Bode plot based design
 - Nyquist Diagram
 - What's Nyquist diagram?
 - What we can gain from Nyquist diagram
 - Matlab functions: nyquist()

Nyquist Diagram: Definition

The Nyquist diagram is a plot of $G(j\Omega)$, where G(s) is the open-loop transfer function and Ω is a vector of frequencies which encloses the entire right-half plane

 $\mathbf{G}(\mathbf{j}\Omega) = |\mathbf{G}(\mathbf{j}\Omega)| \ \mathbf{e}^{\triangleleft \mathbf{G}(\mathbf{j}\Omega)},$

The Nyquist diagram plots the position its the complex plane, while the Bode plot plots its magnitude and phase separately.

Nyquist Criterion for Stability (MM9)

The Nyquist criterion states that:

- P = the number of open-loop (unstable) poles of G(s)H(s)
- N = the number of times the Nyquist diagram encircles -1
 - clockwise encirclements of -1 count as positive encirclements
 - counter-clockwise (or anti-clockwise) encirclements of
 -1 count as negative encirclements
- Z = the number of right half-plane (positive, real) poles of the closed-loop system
- The important equation:

Z = P + N

Goals for this lecture (MM10)

- An illustrative example
 - Frequency response analysis
 - Frequency response design
- Lead and lag compensators
 - What's a lead/lag compensator?
 - Their frequency features
- A systematical procedure for lead compensator design
- A practical design example Beam and Ball Control

What have we talked in lecture (MM10)?

Lead and lag compensators D(s)=(s+z)/(s+p)with z < p or z > p

> $D(s) = K(Ts+1)/(\alpha Ts+1),$ with $\alpha < 1$ or $\alpha > 1$

A systematical procedure for lead compensator design $\omega_{\rm max}$ Plant Controller $\overline{T \sqrt{\alpha}}$ G(s)KD(s) $1 - \sin \beta_{\text{max}}$ $1 + \sin \beta_{\text{max}}$ **Classical Control** 9/9/2011

Exercise

Could you repeat the antenna design using

1. Continuous lead compensation;

2. Emulation method for digital control;

Such that the design specifications:

- Overshoot to a step input less than 5%;
- Settling time to 1% to be less than 14 sec.;
- Tracking error to a ramp input of slope 0.01rad/sec to be less than 0.01rad;
- Sampling time to give at at least 10 samples in a rise time.

(Write your analysis and program on a paper!)

1. Introduction - Root Locus

Open-loop trans. Func.: KG(s); Closed-loop trans. Func.: KG(s)/(1+KG(s)) Sensitivity function: 1/(1+KG(s))

- The root locus of an (open-loop) transfer function **KG(s)** is a plot of the locations (locus) of all possible closed loop poles with proportional gain **K** and unity feedback
- From the root locus we can select a gain such that our closedloop system will perform the way we want

Control Design Using Root Locus (I)

 Objective: select a particular value of K that will meet the specifications for static and dynamic

1+KG(s)=0

Magnitude condition: K=1/|G(s)|

Classical Control

Exercise

- Question 5.2 on FC page.321;
- Consider a DC motor control using a PI controler

Where the motor is modeled as $G(s)=K/(\tau s+1)$ and PI controller is $D(s)=K_p(T_is+1)/T_is$, with parameters K=30, $\tau=0.35$, $T_i=0.041$. Through the root locus method determine the largest vaule of K_p such that $\xi=0.45$

Try to use the root locus method to design a lead compensator for the examplifed attenna system.