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MM1: Basic Concept (I): System and its Variables

 A system is a collection of components which are coordinated 
together to perform a function

 Systems interact with their environment. The interaction is 
defined in terms of variables
 System inputs
 System outputs
 Environmental disturbances

 Dynamic system is a system 
ehose performance could 
change according to time
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MM1: Basic Concept (II): Control 
 Control is a process of causing a system (output) variable to 

conform to some desired status/value
 Manual Control is a process where the control is handled by 

human being(s)
 Automatic Control is a control process which involves 

machines only 
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MM1: Control Classification
 Open-loop Control: A control process which does not utilize the 

feedback mechanism, i.e., the output(s) has no effect upon the 
control input(s) 

 Closed-loop Control: A control process which utilizes the 
feedback mechanism, i.e., the output(s) does have effect upon the 
control input(s)

Reference
/Set-point
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MM1: Feedback Control – Block Diagrams
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The Goals of this lecture (MM2) ...
 Essentials in using (ordinary) differential equation model

 Why use ODE model
 Linear vs. nonlinear ODE models
 How to solve an ODE
 Numerical methods (Matlab)

 Refresh of Laplace transform
 Key features 
 Transformation from ODE to TF model

 Block diagram transformation
 Composition /decomposition
 Signal-flow graph
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MM2: ODE Model  
 A general ODE model:

 SISO, SIMO, MISO, MIMO models
 Linear system, Time-invance, Linear Time-Invarance (LTI) 
 Solution of ODE is an explicit description of dynamic behavior
 Conditions for unique solution of an ODE
 Solving an ODE:

 Time-domain method, e.g., using exponential function
 Complex-domain method (Laplace transform)
 Numerical solution – CAD methods, e.g., ode23/ode45
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MM2: Block diagram Rules
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MM2: Simulink Block diagram 
 System build-up

 Using TF block
 Using nonlinear blocks
 Using math blocks 

 Creat subsystems
 Top-down
 Bottom-up

 Usage of ode23 & ode45 
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Goals for this lecture (MM3)
 Time response analysis
 Typical inputs
 1st, 2nd and higher order systems

 Performance specification of time response
 Transient performance 
 Steady-state performance

 Numerical simulation of time response   
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MM3: Time Response Analysis (I) 
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MM3: Time Response Analysis (II) 

 Typical inputs: impulse, step and ramp 
signals

 1st, 2nd and high-order (LTI) systems
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MM3: Numerical Simulation
 Impulse response: impulse(sys)
 Step response:        step(sys)
 ltiview(sys)
 Subplot(m,n,1)
EXAMPLE:
sys1:                     Sys2: 
num1=[1];                num2=[1 2];
den1=[1 2 1];           den2=[1 2 3];
impulse(tf(num1,den1),'r',tf(num2,den2),'b')
step(tf(num1,den1),'r',tf(num2,den2),'b')
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Goals for this lecture (MM4)
 System poles vs. time responses
 Poles and zeros
 Time responses vs. Pole locations

 Feedback characteristics
 Characteristics  
 A simple feedback design

 Block diagram decomposition (simulink)



MM4 : Poles vs Performance 
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Pole locations Time response



MM4: First-order System
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MM4: Second-Order System
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MM4: Summary of Pole vs Performance
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MM4: Plot of Pole Locations 

s1=tf(1,[1 2 1]); 
s2=tf(1,[1 1.6 1]);
s3=tf(1,[1 1.0 1]);
s4=tf(1,[1 0 1]);
pzmap(s1,s2,s3,s4)
sgrid
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Goals for this lecture (MM5)

 Stability analysis 
 Definition of BIBO
 Pole locations
 Routh criteron

 Steady-state errors
 Final Theorem  
 DC-Gain 
 Stead-state errors

 Effects of zeros and additional poles



MM5 : BIBO Stability
 A system is said to have bounded input-bounded output 

(BIBO) stability if every bounded input results in a bounded 
output (regardless of what goes on inside the system)

 The continuous (LTI) system with impuse response h(t) is 
BIBO stable if and only if h(t) is absolutely integrallable

 All system poles locate in the left half s-plane - asymptotic 
internal stability 

 Routh Criterion: For a stable system, there is no changes in 
sign and no zeros in the first column of the Routh array
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MM5 : Steady-State Error
 Objective: to know whether or not the response of a system 

can approach to the reference signal as time increases
 Assumption: The considered system is stable
 Analysis method: Transfer function + final-value Theorem

 Position-error constant
 Velocity constant
 Acceleration constant
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MM5 : Effect of Additional Zero & Pole
C

ha
pt

er
 6

9/9/2011 23Classical Control

An additional zero in the left half-plane will increase the overshoot
If the zero is within  a factor of 4 of the real part of the complex poles 

An additional zero in the right half-plane will depress the overshoot
and may cause the step response to start out in the wrong direction  

An additional pole in the left half-plane will increase the rise time 
significantly if the extra pole is within a factor of 4 of the real part of 
the complex poles



BIBO Stability – Execise (I)

 Are these systems 
BIBO stable? 

 Intuitive explanation 
 Theoretical analysis 
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BIBO Stability – Execise (II)
 How about the stability of your project systems?
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Revisit of example: First-order System (II)
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9/0.9510/9

 What’s the tpye of original system?
 Derive the transfer function of the closed-loop system
 What’s the time constant and DC-gain of the CL system?
 What’s the feedforward gain so that there is no steady-state 

error? 
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Goals for this lecture (MM6)
 Definition characterisitc of PID control 

 P- controller
 PI- controller
 PID controller

 Ziegler-Nichols tuning methods
 Quarter decay ratio method
 Ultimate sensitivity method



Control objectives
Control is a process of causing a system (output) variable to 

conform to some desired status/value (MM1)

9/9/2011 Classical Control 28

Reference/
Set-point

Control Objectives 
 Stable (MM5)
 Quick responding (MM3, 4) 
 Adequate disturbance rejection
 Insensitive to model & 

measurement errors
 Avoids excessive control action
 Suitable for a wide range of 

operating conditions
(extra readings: Goodwin’s lecture)



MM6:Characteristics of PID Controllers
 Proportional gain, Kp larger values typically mean faster 

response. An excessively large proportional gain will lead to 
process instability and oscillation. 

 Integral gain, Ki larger values imply steady state errors are 
eliminated more quickly. The trade-off is larger overshoot

 Derivative gain, Kd larger values decrease overshoot, but slows 
down transient response and may lead to instability due to 
signal noise amplification in the differentiation of the error.
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MM6: PID Tuning Methods- Trial-Error
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See Hou Ming’s lexture notes



MM6: PID Tuning – Zieglor Niechols (I)

9/9/2011 Classical Control 31

 Pre-condition: system has no overshoot of step response

See Hou Ming’s lexture notes



MM6: PID Tuning – Zieglor Niechols (II)
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 Pre-condition: system order > 2

See Hou Ming’s lexture notes
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Goals for this lecture (MM7)
Some practical issues when developing a PID controler:

 Integral windup & Anti-windup methods
 Derivertive kick
 When to use which controller?
 Operational Amplifier Implementation 
 Other tuning methods
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Anti-windup Techniques



Derivative Kick  
 Derivative kick: if we have a setpoint change, a 

spike will be caused by D controller, which is called  
derivative kick. 

 Derivative kick can be removed by replacing the 
derivative term with just output (y), instead of (rset-y)

 Derivative kick can be reduced by introducing a 
lowpass filter before the set-point enters the system

 The bandwidth of the filter should be much larger 
than the closed-loop system’s bandwidth
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Cohen-Coon Tuning Method
 Pre-condition: first-order system with some time delay 
 Objective: ¼ decay ratio & minimum offset
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Goals for this lecture (MM8)
Essentials for frequency domain design methods – Bode plot

 Bode plot analysis 
 How to get a Bode plot
 What we can gain from Bode plot

 How to use bode plot for design purpose 
 Stability margins (Gain margin and phase margin)
 Transient performance 
 Steady-state performance 

 Matlab functions: bode(), margin()
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Frequency Response

 The frequency response G(j) (=G(s)|s=j) is a representation of 
the system's response to sinusoidal inputs at varying frequencies

G(j) = |G(j)| eG(j),
 Input x(n) and output y(n) relationship

|Y(j)|  = |H(j)| |X(j)|
Y(j) = H(j) + X(j)

 The frequency response of a system can be viewed  
 via the Bode plot (H.W. Bode 1932-1942)
 via the Nyquist diagram

G(s)X(s) Y(s)
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Open-Loop Transfer Function 
 Motivation

Predict the closed-loop system’s properties using the open-
loop system’s frequency response

 Open-loop TF (Loop gain) :

 Closed-loop:

G(s)KD(s)

L(s)=KD(s)G(s)

G(s)

KD(s)

Gcl(s)=L(s)/(1+L(s)), or Gcl(s)=G(s)/(1+L(s))
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Definition of Phase Margin (PM)
 Bode plot of the open-

loop TF

 The phase margin is the 
difference in phase 
between the phase curve 
and -180 deg at the point 
corresponding to the 
frequency that gives us a 
gain of 0dB (the gain 
cross over frequency, 
Wgc).
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Remarks of Using Bode Plot
 Precondition: The system must be stable in open loop if we 

are going to design via Bode plots
 Stability: If the gain crossover frequency is less than the 

phase crossover frequency (i.e. Wgc < Wpc), then the closed-
loop system will be stable

 Damping Ratio: For second-order systems, the closed-loop 
damping ratio is approximately equal to the phase margin 
divided by 100 if the phase margin is between 0 and 60 deg

 A very rough estimate that you can use is that the bandwidth 
is approximately equal to the natural frequency
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Goals for this lecture (MM9)
 A design example based on Bode plot 

 Open-loop system feature analysis 
 Bode plot based design

 Nyquist Diagram 
 What’s Nyquist diagram?
 What we can gain from Nyquist diagram

 Matlab functions: nyquist()
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Nyquist Diagram: Definition
The Nyquist diagram is a plot of G(j) , where G(s) is the 
open-loop transfer function and  is a vector of frequencies 
which encloses the entire right-half plane

G(j) = |G(j)| eG(j),
 The Nyquist diagram plots the position its the complex 

plane , while the Bode plot plots its magnitude and phase 
separately.
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Nyquist Criterion for Stability (MM9)
The Nyquist criterion states that: 
 P = the number of open-loop (unstable) poles of G(s)H(s) 
 N = the number of times the Nyquist diagram encircles –1

 clockwise encirclements of -1 count as positive 
encirclements 

 counter-clockwise (or anti-clockwise) encirclements of 
-1 count as negative encirclements 

 Z = the number of right half-plane (positive, real) poles of 
the closed-loop system

 The important equation: 
Z = P + N 
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Goals for this lecture (MM10)
 An illustrative example 

 Frequency response analysis
 Frequency response design

 Lead and lag compensators 
 What’s a lead/lag compensator?
 Their frequency features

 A systematical procedure for lead compensator design

 A practical design example – Beam and Ball Control 
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What have we talked in lecture (MM10)?
 Lead and lag compensators 

D(s)=(s+z)/(s+p)  
with z < p or  z > p

D(s)=K(Ts+1)/(Ts+1),    
with  <1 or  >1

 A systematical procedure for lead compensator design

max

max

max

sin1
sin1

1
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




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T Controller

KD(s)
Plant
G(s)
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Exercise 
Could you repeat the antenna design using

1. Continuous lead compensation; 
2. Emulation method for digital control; 

Such that the design specifications: 
 Overshoot to a step input less than 5%;
 Settling time to 1% to be less than 14 sec.; 
 Tracking error to a ramp input of slope 0.01rad/sec to 

be less than 0.01rad; 
 Sampling time to give at at least 10 samples in a rise 

time. 
(Write your analysis and program on a paper!)
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1. Introduction - Root Locus

• The root locus of an (open-loop) transfer function KG(s) is a 
plot of the locations (locus) of all possible closed loop poles 
with proportional gain K and unity feedback 

• From the root locus we can select a gain such that our closed-
loop system will perform the way we want

G(s)K

Open-loop trans. Func.: KG(s);  
Closed-loop trans. Func.: KG(s)/(1+KG(s))
Sensitivity function: 1/(1+KG(s))
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Control Design Using Root Locus (I)
 Objective: select a 

particular value of K 
that will meet the 
specifications for static 
and dynamic

1+KG(s)=0

 Magnitude condition:
K=1/|G(s)|
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Exercise 
 Question 5.2 on FC page.321; 
 Consider a DC motor control using a PI controler 

Where the motor is modeled as G(s)=K/(s+1) and PI 
controller is D(s)=Kp(Tis+1)/Tis, with parameters K=30, 
=0.35, Ti=0.041. Through the root locus method determine 
the largest vaule of Kp such that =0.45

 Try to use the root locus method to design a lead compensator 
for the examplifed attenna system. 

G(s)D(s)


