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MM1: Basic Concept (I): System and its Variables

 A system is a collection of components which are coordinated 
together to perform a function

 Systems interact with their environment. The interaction is 
defined in terms of variables
 System inputs
 System outputs
 Environmental disturbances

 Dynamic system is a system 
ehose performance could 
change according to time
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MM1: Basic Concept (II): Control 
 Control is a process of causing a system (output) variable to 

conform to some desired status/value
 Manual Control is a process where the control is handled by 

human being(s)
 Automatic Control is a control process which involves 

machines only 
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MM1: Control Classification
 Open-loop Control: A control process which does not utilize the 

feedback mechanism, i.e., the output(s) has no effect upon the 
control input(s) 

 Closed-loop Control: A control process which utilizes the 
feedback mechanism, i.e., the output(s) does have effect upon the 
control input(s)

Reference
/Set-point
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MM1: Feedback Control – Block Diagrams
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The Goals of this lecture (MM2) ...
 Essentials in using (ordinary) differential equation model

 Why use ODE model
 Linear vs. nonlinear ODE models
 How to solve an ODE
 Numerical methods (Matlab)

 Refresh of Laplace transform
 Key features 
 Transformation from ODE to TF model

 Block diagram transformation
 Composition /decomposition
 Signal-flow graph
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MM2: ODE Model  
 A general ODE model:

 SISO, SIMO, MISO, MIMO models
 Linear system, Time-invance, Linear Time-Invarance (LTI) 
 Solution of ODE is an explicit description of dynamic behavior
 Conditions for unique solution of an ODE
 Solving an ODE:

 Time-domain method, e.g., using exponential function
 Complex-domain method (Laplace transform)
 Numerical solution – CAD methods, e.g., ode23/ode45
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MM2: Block diagram Rules
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MM2: Simulink Block diagram 
 System build-up

 Using TF block
 Using nonlinear blocks
 Using math blocks 

 Creat subsystems
 Top-down
 Bottom-up

 Usage of ode23 & ode45 
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Goals for this lecture (MM3)
 Time response analysis
 Typical inputs
 1st, 2nd and higher order systems

 Performance specification of time response
 Transient performance 
 Steady-state performance

 Numerical simulation of time response   
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MM3: Time Response Analysis (I) 
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MM3: Time Response Analysis (II) 

 Typical inputs: impulse, step and ramp 
signals

 1st, 2nd and high-order (LTI) systems
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Time response = excitation response + initial condition response
(free response)
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MM3: Performance Specification
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MM3: Numerical Simulation
 Impulse response: impulse(sys)
 Step response:        step(sys)
 ltiview(sys)
 Subplot(m,n,1)
EXAMPLE:
sys1:                     Sys2: 
num1=[1];                num2=[1 2];
den1=[1 2 1];           den2=[1 2 3];
impulse(tf(num1,den1),'r',tf(num2,den2),'b')
step(tf(num1,den1),'r',tf(num2,den2),'b')
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Goals for this lecture (MM4)
 System poles vs. time responses
 Poles and zeros
 Time responses vs. Pole locations

 Feedback characteristics
 Characteristics  
 A simple feedback design

 Block diagram decomposition (simulink)



MM4 : Poles vs Performance 
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Pole locations Time response



MM4: First-order System
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Time constant – why?

63%

Time response is determined by the time constant
System pole is the negative of inverse time constant 
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MM4: Second-Order System
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MM4: Summary of Pole vs Performance
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MM4: Plot of Pole Locations 

s1=tf(1,[1 2 1]); 
s2=tf(1,[1 1.6 1]);
s3=tf(1,[1 1.0 1]);
s4=tf(1,[1 0 1]);
pzmap(s1,s2,s3,s4)
sgrid
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Goals for this lecture (MM5)

 Stability analysis 
 Definition of BIBO
 Pole locations
 Routh criteron

 Steady-state errors
 Final Theorem  
 DC-Gain 
 Stead-state errors

 Effects of zeros and additional poles



MM5 : BIBO Stability
 A system is said to have bounded input-bounded output 

(BIBO) stability if every bounded input results in a bounded 
output (regardless of what goes on inside the system)

 The continuous (LTI) system with impuse response h(t) is 
BIBO stable if and only if h(t) is absolutely integrallable

 All system poles locate in the left half s-plane - asymptotic 
internal stability 

 Routh Criterion: For a stable system, there is no changes in 
sign and no zeros in the first column of the Routh array
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MM5 : Steady-State Error
 Objective: to know whether or not the response of a system 

can approach to the reference signal as time increases
 Assumption: The considered system is stable
 Analysis method: Transfer function + final-value Theorem

 Position-error constant
 Velocity constant
 Acceleration constant
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MM5 : Effect of Additional Zero & Pole
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An additional zero in the left half-plane will increase the overshoot
If the zero is within  a factor of 4 of the real part of the complex poles 

An additional zero in the right half-plane will depress the overshoot
and may cause the step response to start out in the wrong direction  

An additional pole in the left half-plane will increase the rise time 
significantly if the extra pole is within a factor of 4 of the real part of 
the complex poles



BIBO Stability – Execise (I)

 Are these systems 
BIBO stable? 

 Intuitive explanation 
 Theoretical analysis 
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BIBO Stability – Execise (II)
 How about the stability of your project systems?
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Revisit of example: First-order System (II)
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9/0.9510/9

 What’s the tpye of original system?
 Derive the transfer function of the closed-loop system
 What’s the time constant and DC-gain of the CL system?
 What’s the feedforward gain so that there is no steady-state 

error? 
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Goals for this lecture (MM6)
 Definition characterisitc of PID control 

 P- controller
 PI- controller
 PID controller

 Ziegler-Nichols tuning methods
 Quarter decay ratio method
 Ultimate sensitivity method



Control objectives
Control is a process of causing a system (output) variable to 

conform to some desired status/value (MM1)
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Reference/
Set-point

Control Objectives 
 Stable (MM5)
 Quick responding (MM3, 4) 
 Adequate disturbance rejection
 Insensitive to model & 

measurement errors
 Avoids excessive control action
 Suitable for a wide range of 

operating conditions
(extra readings: Goodwin’s lecture)



MM6:Characteristics of PID Controllers
 Proportional gain, Kp larger values typically mean faster 

response. An excessively large proportional gain will lead to 
process instability and oscillation. 

 Integral gain, Ki larger values imply steady state errors are 
eliminated more quickly. The trade-off is larger overshoot

 Derivative gain, Kd larger values decrease overshoot, but slows 
down transient response and may lead to instability due to 
signal noise amplification in the differentiation of the error.
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MM6: PID Tuning Methods- Trial-Error
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See Hou Ming’s lexture notes



MM6: PID Tuning – Zieglor Niechols (I)
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 Pre-condition: system has no overshoot of step response

See Hou Ming’s lexture notes



MM6: PID Tuning – Zieglor Niechols (II)
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 Pre-condition: system order > 2

See Hou Ming’s lexture notes
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Goals for this lecture (MM7)
Some practical issues when developing a PID controler:

 Integral windup & Anti-windup methods
 Derivertive kick
 When to use which controller?
 Operational Amplifier Implementation 
 Other tuning methods
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Anti-windup Techniques



Derivative Kick  
 Derivative kick: if we have a setpoint change, a 

spike will be caused by D controller, which is called  
derivative kick. 

 Derivative kick can be removed by replacing the 
derivative term with just output (y), instead of (rset-y)

 Derivative kick can be reduced by introducing a 
lowpass filter before the set-point enters the system

 The bandwidth of the filter should be much larger 
than the closed-loop system’s bandwidth
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Cohen-Coon Tuning Method
 Pre-condition: first-order system with some time delay 
 Objective: ¼ decay ratio & minimum offset
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Goals for this lecture (MM8)
Essentials for frequency domain design methods – Bode plot

 Bode plot analysis 
 How to get a Bode plot
 What we can gain from Bode plot

 How to use bode plot for design purpose 
 Stability margins (Gain margin and phase margin)
 Transient performance 
 Steady-state performance 

 Matlab functions: bode(), margin()
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Frequency Response

 The frequency response G(j) (=G(s)|s=j) is a representation of 
the system's response to sinusoidal inputs at varying frequencies

G(j) = |G(j)| eG(j),
 Input x(n) and output y(n) relationship

|Y(j)|  = |H(j)| |X(j)|
Y(j) = H(j) + X(j)

 The frequency response of a system can be viewed  
 via the Bode plot (H.W. Bode 1932-1942)
 via the Nyquist diagram

G(s)X(s) Y(s)
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Open-Loop Transfer Function 
 Motivation

Predict the closed-loop system’s properties using the open-
loop system’s frequency response

 Open-loop TF (Loop gain) :

 Closed-loop:

G(s)KD(s)

L(s)=KD(s)G(s)

G(s)

KD(s)

Gcl(s)=L(s)/(1+L(s)), or Gcl(s)=G(s)/(1+L(s))



9/9/2011 Analog and Digital Control 41

Definition of Phase Margin (PM)
 Bode plot of the open-

loop TF

 The phase margin is the 
difference in phase 
between the phase curve 
and -180 deg at the point 
corresponding to the 
frequency that gives us a 
gain of 0dB (the gain 
cross over frequency, 
Wgc).
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Remarks of Using Bode Plot
 Precondition: The system must be stable in open loop if we 

are going to design via Bode plots
 Stability: If the gain crossover frequency is less than the 

phase crossover frequency (i.e. Wgc < Wpc), then the closed-
loop system will be stable

 Damping Ratio: For second-order systems, the closed-loop 
damping ratio is approximately equal to the phase margin 
divided by 100 if the phase margin is between 0 and 60 deg

 A very rough estimate that you can use is that the bandwidth 
is approximately equal to the natural frequency
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Goals for this lecture (MM9)
 A design example based on Bode plot 

 Open-loop system feature analysis 
 Bode plot based design

 Nyquist Diagram 
 What’s Nyquist diagram?
 What we can gain from Nyquist diagram

 Matlab functions: nyquist()



9/9/2011 Classical Control 44

Nyquist Diagram: Definition
The Nyquist diagram is a plot of G(j) , where G(s) is the 
open-loop transfer function and  is a vector of frequencies 
which encloses the entire right-half plane

G(j) = |G(j)| eG(j),
 The Nyquist diagram plots the position its the complex 

plane , while the Bode plot plots its magnitude and phase 
separately.
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Nyquist Criterion for Stability (MM9)
The Nyquist criterion states that: 
 P = the number of open-loop (unstable) poles of G(s)H(s) 
 N = the number of times the Nyquist diagram encircles –1

 clockwise encirclements of -1 count as positive 
encirclements 

 counter-clockwise (or anti-clockwise) encirclements of 
-1 count as negative encirclements 

 Z = the number of right half-plane (positive, real) poles of 
the closed-loop system

 The important equation: 
Z = P + N 
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Goals for this lecture (MM10)
 An illustrative example 

 Frequency response analysis
 Frequency response design

 Lead and lag compensators 
 What’s a lead/lag compensator?
 Their frequency features

 A systematical procedure for lead compensator design

 A practical design example – Beam and Ball Control 
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What have we talked in lecture (MM10)?
 Lead and lag compensators 

D(s)=(s+z)/(s+p)  
with z < p or  z > p

D(s)=K(Ts+1)/(Ts+1),    
with  <1 or  >1

 A systematical procedure for lead compensator design

max

max

max

sin1
sin1

1













T Controller

KD(s)
Plant
G(s)
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Exercise 
Could you repeat the antenna design using

1. Continuous lead compensation; 
2. Emulation method for digital control; 

Such that the design specifications: 
 Overshoot to a step input less than 5%;
 Settling time to 1% to be less than 14 sec.; 
 Tracking error to a ramp input of slope 0.01rad/sec to 

be less than 0.01rad; 
 Sampling time to give at at least 10 samples in a rise 

time. 
(Write your analysis and program on a paper!)
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1. Introduction - Root Locus

• The root locus of an (open-loop) transfer function KG(s) is a 
plot of the locations (locus) of all possible closed loop poles 
with proportional gain K and unity feedback 

• From the root locus we can select a gain such that our closed-
loop system will perform the way we want

G(s)K

Open-loop trans. Func.: KG(s);  
Closed-loop trans. Func.: KG(s)/(1+KG(s))
Sensitivity function: 1/(1+KG(s))
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Control Design Using Root Locus (I)
 Objective: select a 

particular value of K 
that will meet the 
specifications for static 
and dynamic

1+KG(s)=0

 Magnitude condition:
K=1/|G(s)|
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Exercise 
 Question 5.2 on FC page.321; 
 Consider a DC motor control using a PI controler 

Where the motor is modeled as G(s)=K/(s+1) and PI 
controller is D(s)=Kp(Tis+1)/Tis, with parameters K=30, 
=0.35, Ti=0.041. Through the root locus method determine 
the largest vaule of Kp such that =0.45

 Try to use the root locus method to design a lead compensator 
for the examplifed attenna system. 

G(s)D(s)


