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MM1: Basic Concept (1): System and its VVariables

A system is a collection of components which are coordinated
together to perform a function

Systems interact with their environment. The interaction is
defined in terms of variables

System inputs
System outputs
Environmental disturbances

Dynamic system Is a system
ehose performance could
change according to time N\

Disturbance Inputs

/7

System Outputs

Information systems

Control Inputs

9/9/2011 Classical Control
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MM1: Basic Concept (11): Control

Control is a process of causing a system (output) variable to
conform to some desired status/value

Manual Control is a process where the control is handled by
human being(s)

Automatic Control is a control process which involves
machines only

Desired room
temperature setting

Q \‘.
(R
5 FEET ~ \ 3
) 22
lmu . Actual room 1" (B
temperature “

] Furnace Hot-air
cou Hor vents
kg o~ Thermostat
SUPPLY SUPPLY

Home heating control system.

Flow diagram for shower example.

9/9/2011 Classical Control
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MM1: Control Classification

m  Open-loop Control: A control process which does not utilize the
feedback mechanism, i.e., the output(s) has no effect upon the
control input(s)

m Closed-loop Control: A control process which utilizes the
feedback mechanism, i.e., the output(s) does have effect upon the
control input(s)

Reference
/Set-point

9/9/2011 Classical Control



I\/IMl Feedback Control — Block Dlagrams

l disturbance

Reference
' + Forward
InpUt > > > >
—() compensator]| _(2ctuator Plant
Feedback |
compensator SENSOT <
lW
+
r;,@ > D(S) > A(S) > P(S) >
F(s) S(s) |-

9/9/2011 Classical Control
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The Goals of this lecture (MM2) ...

m Essentials in using (ordinary) differential equation model
Why use ODE model

Linear vs. nonlinear ODE models
How to solve an ODE

Numerical methods (Matlab)
m Refresh of Laplace transform
Key features
Transformation from ODE to TF model
Block diagram transformation

Composition /decomposition
Signal-flow graph

9/9/2011 Classical Control
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MM?2: ODE Model
m A general ODE model:
i 0 4 B ) = b Tt by T by

SISO, SIMO, MISO, MIMO models

Linear system, Time-invance, Linear Time-Invarance (LTI)
Solution of ODE is an explicit description of dynamic behavior
Conditions for unique solution of an ODE

Solving an ODE:
Time-domain method, e.g., using exponential function
Complex-domain method (Laplace transform)
Numerical solution — CAD methods, e.g., ode23/ode45

. 9/9/2011 Classical Control



MMZ2: Block diagram Rules

Combining blocks in cascade:

Eliminating a feedback loop:

X X X X X,
G - 6 - GG, -
- X X G X,

X] 2
- G e — e [
Combining blocks in parallel: -
G‘l
> '% X % x;
—_ G+ G,
G, _
X,

Moving a summing point backward:

Moving a pickoff point forward: %, - : X, o -
X, 2 X, G X, |_Xl T x:

X
jG . S
XI

X

o]~

Moving a summing point forward:

Moving a pickoff point backward:
xl_. . X, — X, . _x_ X - G Xy : X G - X,
%X G = G —

9/9/2011 Classical Control
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MM2: Simulink Block diagram

m  System build-up
Using TF block
Using nonlinear blocks
Using math blocks

m Creat subsystems
Top-down
Bottom-up

m Usage of ode23 & 0de45

9/9/2011 Classical Control
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Goals for this lecture (MM3)

m  Time response analysis
m Typical inputs
m 1st, 2nd and higher order systems

m Performance specification of time response
m Transient performance
m Steady-state performance

m  Numerical simulation of time response

9/9/2011 Classical Control
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( ) - v — em — f ( em (O), em (O), Va ’ T; ’ Tf) “help ode23" to find out all the other options.

u(t)

& Time response y(t)

—_ \ : _§ 00@
Typical inputu(t) ... = ‘vf /
o N\

9/9/2011 Analog and Digital Control 10




}ou(t)
L I DZ.

w1 U(s)

- Y(s)

s+p

- - - , - . - -
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MM3: Time Response Analy3|s (I I)

m Typical inputs: impulse, step and ramp

signals

m 1st, 2nd and high-order (LTI) systems Ramp

Test signal |u(t)|U(s)
Impulse |d(¢) |1
1
t

Step

G(s) = k

pole: - p,
S+p
G(s) = ¢ pole : —l,
s+1 T
time domain :

g(t)=ke™ or g(t)zge ’
T

. 1
time constant : —

p

time constant : 7

iy

G(s) = .
) s + 2bwns + w2

o ¢ — damping ratio, a dimensionless factor

o wy, — natural frequency with unit rad/s

Time response = excitation response + initial condition response

9/9/2011

(free response)

Classical Control 11
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s2 + 2twps + w%

e ¢ = tan™? 1.5_ 52:, wg = wyl — &2 'IG(S J=

MM3: Performance Specification

O, p o= 18
2 70 @
0, e _ 4.6 _ 4.6
.................................................................... I o, o
EE OO SO S '..'.....f.f.f.f.f.f.f.f..'.....f.f.f.f.f[:.... 5 %, & =0.7
M ,=1{16% ¢ =0.5
35% ¢ =0.3
t, = 4 o, =w,\1-¢°
@ 4
. T —
. P 5 t Rise time 7} = e
. - Wy
5 0 T -
Peak time T} = —
Wy
Steady-state error egg: difference between o 4
input & output as t — oo Settling time T ~ Ewn
__&r

9/9/2011 Classical Conl OVershoot O = e V1-€7 12



MM3: Numerical Simulation

m Impulse response: impulse(sys)
m Step response: step(sys) |
m [tiview(sys)
m Subplot(m,n,1)

EXAMPLE:

sysl: Sys2:

numl1=[1]; num2=[1 2];

denl=[1 2 1]; den2=[1 2 3];

impulse(tf(numl,denl),'r',tf(num2,den2),'b")
step(tf(numl,denl),'r',tf(num2,den2),'b")

9/9/2011 Process Control

13



Goals for this lecture (MM4)

m System poles vs. time responses
m Poles and zeros
m Time responses vs. Pole locations

m Feedback characteristics
m Characteristics
m A simple feedback design

m Block diagram decomposition (simulink)

9/9/2011 Classical Control
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MM4 : Poles vs Performance

G(s)

Wi

s2 + 2€wns + w2
e ¢ — damping ratio, a dimensionless factor

e wy, — natural frequency with unit rad/s

V4

N

Pole locations <= ;6 rosponse

9/9/2011

Classical Control
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MM4: First-order System

Vit
G(s):i, assume 7>0 y(H
m+1 A
pole: —E, time constant: z,
a
1 —
Impulseresponse. y(t)=L(—— )=e * N B
s+l | heeea
1, 0 [
Stepresponse: y(t)=L( 1 )=1l-e° 03%0 :
s(m+1)
|
T|fme constant — why?
y(t) i A -
k 0 ‘
Time response Is determined by the time constant
System pole Is the negative of inverse time constant
0 i t

9/9/2011 Classical Control
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MM4: Second-Order S'yste‘fnm

R (] e
{ P
> -
o 1 el
- RS
AT
A B, S
B AT

..... W
- -
e A s

G(s)=— -, assume o, >0, £>0 o,
s*+2w, + o, , . 46 _ 46
7w i T
pOIeS pl’z Z_é:a)n ia)n \/ 62 _1 5 %, é/ = O T
real (differend poles: p,, =—¢w, +w,E -1, if £>1 M, =116% ¢ =05
L ' . 3 %, ¢ =0.3
real (identical) poles: p,, =—¢w,, if&=1
! T
t, = , w, =0, +J1-C¢7?
complexpoles: p,, =—éw, + jo,/1- &7, if0<&<1 @ 4
complex poles: =1 if &= L ™ —
PIEX POIES: Py, =%/ @0, lrg =0 Rise time 7T} = ¢
- Imi(s) o “d
e § T , T
sin™ ¢ Peak time T} = —
1F OJd
L 4
Settling time Ty ~ —
wn\ w'n
- __&r
I e ..
| X I - Overshoot O) = e V1<

l"— K= (Uu'

1
|
S

T L

¢ = tan_llg, wg = wyl — &2

Classical Control
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IM4: Summary of Pole vs Performance

1 Im(s)

>
Rely)

"ﬂ&", . 9/9/2011 Classical Control 18
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Goals for this lecture (MM5)

m Stability analysis
m Definition of BIBO
m Pole locations
m Routh criteron
m Steady-state errors
m Final Theorem
m DC-Gain
m Stead-state errors
m Effects of zeros and additional poles

9/9/2011 Classical Control
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MMS5 : BIBO Stability

m A system is said to have bounded input-bounded output
(BIBO) stability if every bounded input results in a bounded
output (regardless of what goes on inside the system)

m The continuous (LTI) system with impuse response h(t) is
BIBO stable if and only if h(t) is absolutely integrallable

m  All system poles locate in the left half s-plane - asymptotic
Internal stability

m  Routh Criterion: For a stable system, there is no changes in
sign and no zeros in the first column of the Routh array

9/9/2011 Classical Control 2 1



Objective: to know whether or not the response of a system
can approach to the reference signal as time increases

Assumption: The considered system is stable
Analysis method: Transfer function + final-value Theorem

e(w) =M s(R(s) =Y (s)) = Im s(R(s) = G(s)R(s))

=1lims(-G(s)R(s), R(s)= 1

- lim(1- G (5)) :1@ —> DC-Gain

Position-error constant
Velocity constant K, =lim sG,(s)
Acceleration constant K, =lim s*G(s)

= Iimo G,(s)

9/9/2011 Classical Control
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M M5 : Effect of Additional Zero & Pole

o

Step Response

! ! t
. ; : s0
s
. - s2
V4 System: s5 : : : : s3
[———— ... Time(secy: 161 .. ... ... .. ... ... SN e e s 2 8 R S £ sl

Amplitude: 2.71

Amplitude: 0.84
-

9/9/2011

6
Time (sec)
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Gs) = Yolo) _ 1 S 2(t)  Ldi(t)

| . o T g Soe et =

BIBO Stability — Execise (I)

o—" ] o |
R
v (t)| c L | v,® VO ) R||]4]L g+ v(t)
1
5 o
o—— 1} O

R
R
m Are these systems

? ° BIBO stable?
m Intuitive explanation
) : - T o m Theoretical analysis

()

w
|

YIYIZULL classical Control 24



BIBO Stability — Execise (I1)

~ m How about the stability of your project systems?

(I + m,?)0" — m,gl0’ = m,I%

, (m, + m,)X + bx — m, 10" = u.

(I + m, 10 + m,gld = —m,I%

(m, + my)% + bx + m, 10 = u.

9/9/2011 Classical Control 25



.

. - s e s
kwr"ﬁ(..:'&-’z,. -,‘f--',"., A i
e \'Q.“V

Revisit of example Flrstorder System (I I) '

1
> 1
s+1 -
ta Transfer Fon
—+
I — [P
Add
T T |
G > >
10s+1 I
|
10/9 9/095 I Scope
| S I I I I I I S B S S S B e e aae e mee el
0.95
P
10s+1
Transfer Foen 2

What’s the tpye of original system?
Derive the transfer function of the closed-loop system
What’s the time constant and DC-gain of the CL system?

What’s the feedforward gain so that there is no steady-state
error?
9/9/2011 Classical Control 26
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Goals for this lecture (MM©6)

m Definition characterisitc of PID control
m P-controller
m Pl-controller
m PID controller

m Ziegler-Nichols tuning methods
m  Quarter decay ratio method
m Ultimate sensitivity method

9/9/2011 Classical Control
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Control is a process of causing a system (output) variable to
conform to some desired status/value (MM1)

Control Objectives

m Stable (MMD5)

& m Quick responding (MM3, 4)

m  Adequate disturbance rejection
|

Insensitive to model &
measurement errors

Avoids excessive control action

m Suitable for a wide range of
operating conditions

9/9/2011 | (egggiggpgm%r' Goodwin’s lecture) 28
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MMG6:Characteristics of PID Controllers

= Proportional gain, K, larger values typically mean faster
response. An excessively large proportional gain will lead to
process instability and oscillation.

m Integral gain, K. larger values imply steady state errors are
eliminated more quickly. The trade-off is larger overshoot

m Derivative gain, K, larger values decrease overshoot, but slows
down transient response and may lead to instability due to
signal noise amplification in the differentiation of the error.

+
Re)——0-EO) Jsarmer 1o o " Y(s)

9/9/2011 Classical Control 29



Rules of thumb:
Ky > K; > Ky,
Ky~ (5~ 10) K,
K;,~ (b~ 10)K

e Adavantages: Simple

e Disadvantages:

— unsatistactory performance
— expensive on-site experiment
— issues of equipment safety

Procedure:

Step 1: Set K; = 0 & Ky = 0. Increase K)
from zero;

Step 2: Fix K. Increase K; from zero;

Step 3: Fix K & K;. Increase K from zero.

Note: Several iterations of the procedure may
be necessary

See Hou Ming’s lexture notes

9/9/2011

Classical Control
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MMG6: PID Tuning — Zieglor Niech

.

. .
s

ols (1)

m Pre-condition: system has no overshoot of step response

ult)

Plant

Control

Kp

P

|

Smj 111

R
- S’f’gm 2172'1 ()06
P I D S 17 :Z 11 vTI'L Ym

9/9/2011

P s - ™ T - -~ et

TN e - o s e SRR g e e
- aANEg " . - —— D e N Wy By =
DA —_ __:G-w.k e

v(t)
B
0 t
L™
See Hou Ming’s lexture notes
31
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MMG6: PID Tunlng Zleglor Nlechols (II)

m Pre-condition: system order > 2

AR Y(s) \
K 3 Ko Plant > v
Control Kp K; K ‘ :
Ittt Mty 28 Btk 2 Mtel ¢ BN
P —‘212l 0 0
PID 3{5{0 3K1.6Ia %%IQ See Hou Ming’s lexture notes

9/9/2011
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Some practical issues when developing a PID controler:

Integral windup & Anti-windup methods
Derivertive kick

When to use which controller?

Operational Amplifier Implementation
Other tuning methods

9/9/2011 Classical Control
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(b)
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d)
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SR w0 =K(e()+ j e(r)dr +T, (1)

1

Derivative Kick U(s)=K(1+TiS)E(s)+TDsY(s)

1

Derivative Kick: if we have a setpoint change, a
spike will be caused by D controller, which is called
derivative kick.

Derivative kick can be removed by replacing the
derivative term with just output (y), instead of (rset-y)

Derivative kick can be reduced by introducing a
lowpass filter before the set-point enters the system

The bandwidth of the filter should be much larger
than the closed-loop system’s bandwidth

9/9/2011 Classical Control 35
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(1st order)

g \'.\‘f‘ -

e G(s)=

Cohen-Coon Tuning Method

m Pre-condition: first-order system with some time delay
m  Objective: ¥ decay ratio & minimum offset

Kec Ti To
kp 6 3
PI 1z 9 6 30+3(0/ 1)
—(—+ ) 6
kp 6 10 127 9+20(6/71)
PD| 174 6 ,32+6(0/7) . 4
k, 63 4t 13+8(6/1) 11+2(6/ 1)

In the table kp is the process gain, t the process time constant and 6 the
process time delay.

9/9/2011 Classical Control 36



wff
S

G(s) = ; (1st order)

Table 12.3 Controller Des:gn Relations Based on the ITAE Performance Index and a First-
Order plus Time-Delay Model

Type of Input Type of Controller Mode A B
Load Pl P 0.859 -0.977
I 0.674 -(.680
Load PID P 1.357 -0.947
| I 0.842 -(0.738
D 0.381 0.995
Set point PI P 0.586 -0.916
I 1.03b -0.165°
Set point PID p 0.965 ~0.85
I 0.796° . =0.1465°
D 0.308 0.929

e

*Design relation: Y = A(8/1)® where Y = KK, for the proportional mode, 7/1, for the integral mode,
and 1,/7 for the derivative mode.

®For set-point changes, the design relation for the integral mode is 7/1, = A + B(08/1). [8]

9/9/2011 Classical Control 37
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Goals for this lecture (MMS8)
Essentials for frequency domain design methods — Bode plot

m Bode plot analysis
How to get a Bode plot
What we can gain from Bode plot
m  How to use bode plot for design purpose
Stability margins (Gain margin and phase margin)
Transient performance
Steady-state performance
m  Matlab functions: bode(), margin()

9/9/2011 Classical Control
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Frequency Response

X(s) G(s) " Y(s)

The frequency response G(JQ2) (=G(s)|s=ie) Is a representation of
the system's response to sinusoidal inputs at varying frequencies

G(jQ) = |G(j2)| e<cUe,
Input x(n) and output y(n) relationship
[YQ€)| = [HO)| [XULQ)]
<Y (JQ) = <H(Q) + <X(JQ2)
The frequency response of a system can be viewed
via the Bode plot (H.W. Bode 1932-1942)
via the Nyquist diagram

9/9/2011 Analog and Digital Control 39
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Open Loop Transfer Function

m  Motivation

Predict the closed-loop system’s properties using the open-
loop system’s frequency response

m  Open-loop TF (Loop gain) :L(s)=KD(s)G(s)

i\ d rad
a~ gl
" - N
s e
e o
N e

*3——KD(s)

» G(S)

» G(S)

m Closed-loop:

9/9/2011

KD(s)r

Analog and Digital Control

Go(S)=L(S)/(L+L(S)), o Gy()=G(s)/(L+L(5))

40



Definition of Phase I\/Iargln (PI\/I)

100

Ris) +
o - ~{X

Bode plot of the open-
loop TF

The phase margin is the

difference in phase
between the phase curve

and -180 deg at the point
corresponding to the

frequency that gives us a
gain of 0dB (the gain
cross over frequency,

Wqc).

1g"

9/9/2011 Analog and Digital Control
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10 0
Frequency ( rad}sec)
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Remarks of Using Bode Plot

Precondition: The system must be stable in open loop if we
are going to design via Bode plots

Stability: If the gain crossover frequency is less than the
phase crossover frequency (i.e. Wgc < Wpc), then the closed-
loop system will be stable

Damping Ratio: For second-order systems, the closed-loop
damping ratio is approximately equal to the phase margin
divided by 100 if the phase margin is between 0 and 60 deg

A very rough estimate that you can use is that the bandwidth
IS approximately equal to the natural frequency

9/9/2011 Analog and Digital Control 42



Goals for this lecture (MM?9)

m A design example based on Bode plot
Open-loop system feature analysis
Bode plot based design

m  Nyquist Diagram
What’s Nyquist diagram?

What we can gain from Nyquist diagram

m  Matlab functions: nyquist()

9/9/2011 Classical Control
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Nyquist Dlagram Definition

The Nyquist diagram is a plot of G(JQ2) , where G(S) Is the
open-loop transfer function and €2 is a vector of frequencies
which encloses the entire right-half plane

G(Q) = [G(j€2)] e<ct),
The Nyquist diagram plots the position its the complex
plane , while the Bode plot plots its magnitude and phase

separately.
10

9/9/2011 Classical Control
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Nyquist Criterion for Stability (MM?9)

The Nyquist criterion states that:
m P =the number of open-loop (unstable) poles of G(s)H(s)
m N =the number of times the Nyquist diagram encircles -1

clockwise encirclements of -1 count as positive
encirclements

counter-clockwise (or anti-clockwise) encirclements of
-1 count as negative encirclements

m Z =the number of right half-plane (positive, real) poles of
the closed-loop system

m The important equation:
Z=P+N

9/9/2011 Classical Control
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Goals for thls Iecture (I\/II\/IlO)

m  An illustrative example
Frequency response analysis
Frequency response design

m [ead and lag compensators
What’s a lead/lag compensator?
Their frequency features

m A systematical procedure for lead compensator design

m A practical design example — Beam and Ball Control

9/9/2011 Classical Control
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What have we talked in lecture (MM10)?

m Leadand lag compensators - — 77 -
D(s)=(s+2)/(s+p) s of PP

withz<por z>p Jf
D(s)=K(Ts+1)/(aTs+1), J— LT L i
with o <1 or o >1 == \\*‘

\ 4

| Controller Plant |
? KD(s) G(s)

9/9/2011 Classical Control
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Could you repeat the antenna design using
1. Continuous lead compensation;
2. Emulation method for digital control;
Such that the design specifications:
Overshoot to a step input less than 5%;
Settling time to 1% to be less than 14 sec.;

Tracking error to a ramp input of slope 0.01rad/sec to
be less than 0.01rad;

Sampling time to give at at least 10 samples in a rise
time.

(Write your analysis and program on a paper!)

9/9/2011 Classical Control 48
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1. Introduction - Root Locus

1K 1 G(s)

Open-loop trans. Func.: KG(s);

Closed-loop trans. Func.: KG(s)/(1+KG(s))
Sensitivity function: 1/(1+KG(s))

The root locus of an (open-loop) transfer function KG(s) Is a
plot of the locations (locus) of all possible closed loop poles
with proportional gain K and unity feedback

From the root locus we can select a gain such that our closed-
loop system will perform the way we want

9/9/2011 Classical Control 49
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Control DeS|gn Using Root Locus (1)

=05 {Himes
m  Objective: select a ¥
particular value of K i
that will meet the : §
specifications for static F Vo, |
and dynamic w-uf X T
1+KG(s)=0 / X
! ks J I 1 !
=3 —4 7’3 —2 =1 // i I 2  Re(s)
m  Magnitude condition: / a
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EXxercise
m  Question 5.2 on FC page.321;
m Consider a DC motor control using a Pl controler

35— D(s)  G(S)

Where the motor is modeled as G(s)=K/(ts+1) and PI
controller is D(s)=K,(T;s+1)/T;s, with parameters K=30,
1=0.35, T;=0.041. Through the root locus method determine
the largest vaule of K, such that £=0.45

m Try to use the root locus method to design a lead compensator
for the examplifed attenna system.

9/9/2011 Classical Control 51



