

Classical Control Lecture 5

 What is Root Locus
 Why use Root Locus?

 Root Locus Design
 Root Locus

 Exercises
 Sketching a Root Locus

Outline

What is Root Locus

- Why use Root Locus?
- Root Locus
- Sketching a Root Locus

2 Root Locus Design

- Gain Controller
- Lead Compensation
- Lag Compensation

Why use Root Locus? Root Locus Sketching a Root Locus

Properties of a General System

Transfer Functions

- Open loop: D(s)G(s)
- Closed loop: $\frac{D(s)G(s)}{1+D(s)G(s)}$
- Sensitivity: $\frac{1}{1+D(s)G(s)}$

Why use Root Locus? Root Locus Sketching a Root Locus

The Goal of Root Locus

What do we want?

- Show how changes in a systems feedback characteristics and other parameters influence the pole locations
- Study the effects of additional poles and zeros when designing dynamic compensation

Why use Root Locus? Root Locus Sketching a Root Locus

Effects of Additional Poles and Zeros

Why use Root Locus? Root Locus Sketching a Root Locus

S-plane Design in MATLAB

sgrid(linspace(0,1,11),linspace(0,9,10),'new')

What is Root Locu	Why use Root Locus?
Root Locus Design	Root Locus
Exercise	Sketching a Root Locus

Root Locus

• **Root Locus** is the set of values for *s* for which the following equation holds for some real value of *K*

$$1+KL(s)=0$$

which is the characteristic equation for the closed loop system

$$\frac{D(s)G(s)}{1+D(s)G(s)} = \frac{KL(s)}{1+KL(s)}$$

The roots of the characteristic equation is thus the poles of the closed loop system

	What is Root Locus Root Locus Design Exercises	Why use Root Locus? Root Locus Sketching a Root Locus	
Root Locus			

• Generally the root locus can be formulated as:

$$1 + KL(s) = 0$$
$$1 + K\frac{b(s)}{a(s)} = 0$$
$$a(s) + Kb(s) = 0$$
$$L(s) = -\frac{1}{K}$$

Why use Root Locus? Root Locus Sketching a Root Locus

Root Locus: Example 1 (FC pp. 234)

System

$$egin{aligned} G(s) &= rac{1}{s(s+1)} \ D(s) &= \mathcal{K} \ 1 + D(s)G(s) &= 1 + \mathcal{K}rac{1}{s(s+1)} = 1 + \mathcal{K}\mathcal{L}(s) \ \mathcal{L}(s) &= rac{1}{s(s+1)} \end{aligned}$$

MATLAB

sys=tf(1,[1 1 0]);
rlocus(sys)
axis([-1.05 0.05 -0.8 0.8])

s.

Why use Root Locus? Root Locus Sketching a Root Locus

Root Locus: Example 1

Root Locus

Classical Control

Why use Root Locus? Root Locus Sketching a Root Locus

Root Locus: Example 2 (FC pp. 235)

Plant

$$G(s) = \frac{1}{s(s+c)}$$

$$D(s) = 1$$

$$1 + D(s)G(s) = 1 + \frac{1}{s(s+c)} = 0 = s^{2} + cs + 1 = a(s) + cb(s)$$

$$L(s) = \frac{b(s)}{a(s)} = \frac{s}{s^{2} + 1}$$

MATLAB

sys=tf([1 0],[1 0 1]); rlocus(sys) axis([-2 0.05 -1.05 1.05])

s.

Why use Root Locus? Root Locus Sketching a Root Locus

Root Locus: Example 2

Root Locus

Lecture 5 Classical Control

Why use Root Locus? Root Locus Sketching a Root Locus

Sketching a Root Locus (FC 3rd ed. pp. 260)

Summary: Guidelines for Plotting a 180° Root Locus

- 1. Mark poles with an \times and zeros with a \bigcirc .
- 2. Draw the locus on the real axis to the left of an odd number of real poles plus zeros.
- 3. Draw the asymptotes, centered at α and leaving at angles ϕ_l , where

n - m = number of asymptotes

$$\begin{split} \alpha &= \frac{\sum p_l - \sum z_l}{n - m} = \frac{-a_1 + b_1}{n - m}, \\ \phi_l &= \frac{180^\circ + 360^\circ(l - 1)}{n - m}, \quad l = 1, 2, \dots, n - m. \end{split}$$

 Compute locus departure angles from the poles and arrival angles at the zeros:

$$q\phi_{dep} = \sum \psi_i - \sum \phi_i - 180^\circ - 360^\circ l,$$

$$q\psi_{arr} = \sum \phi_i - \sum \psi_i + 180^\circ + 360^\circ l,$$

where q is the order of the pole or zero and l takes on q integer values so that the angles are between $\pm 180^{\circ}$.

- 5. If further refinement is required at the stability boundary: Assume s₀ = jw₀, and compute the point(s) where the locus crosses the imaginary axis for positive values of K, and/or use Routh's stability criterion. (This step may not be necessary.)
- 6. Use the results from the study of multiple roots to help in sketching how locus segments come together and break away. Two segments come together at 180° and break away at ±90°. Three locus segments approach each other at relative angles of 120° and depart at angles rotated by 60°.
- Complete the locus, using the facts developed in the previous steps and making reference to the illustrative loci for guidance. The locus branches start at poles and end at zeros or infinity.

Why use Root Locus? Root Locus Sketching a Root Locus

Root Locus: Example 3

$\mathsf{Plant}\ (D(s)=K)$

$$G(s) = \frac{s+1}{s^2(s+4)} = L(s)$$

$$a(s) = s^3 + 4s^2 \qquad b(s) = s+1$$

$$b\frac{da}{ds} - a\frac{db}{ds} = 0 \qquad s = 0, -1.75 \pm 0.9682j$$

```
sys=tf([1 1],[1 4 0 0]);
rlocus(sys)
axis([-4.2 0.2 -6 6])
```


Why use Root Locus? Root Locus Sketching a Root Locus

Root Locus: Example 3

Why use Root Locus? Root Locus Sketching a Root Locus

Root Locus: Example 4

Plant $(D(s) = \overline{K})$

$$G(s) = \frac{s+1}{s^2(s+9)} = L(s)$$
$$a(s) = s^3 + 9s^2 \qquad b(s) = s+1$$
$$b\frac{da}{ds} - a\frac{db}{ds} = 0 \qquad s = 0, -3, -3$$

```
sys=tf([1 1],[1 9 0 0]);
rlocus(sys)
axis([-9.2 0.2 -6 6])
```


Why use Root Locus? Root Locus Sketching a Root Locus

K

Root Locus: Example 4

Root Locus

Why use Root Locus? Root Locus Sketching a Root Locus

Root Locus: Example 5

Plant (D(s) = K)

$$G(s) = \frac{s+1}{s^2(s+12)} = L(s)$$

$$a(s) = s^3 + 12s^2 \qquad b(s) = s+1$$

$$b\frac{da}{ds} - a\frac{db}{ds} = 0 \qquad s = 0, -2.3, -5.2$$

```
sys=tf([1 1],[1 12 0 0]);
rlocus(sys)
axis([-12.2 0.2 -6 6])
```


Why use Root Locus? Root Locus Sketching a Root Locus

Root Locus: Example 5

Root Locus

Why use Root Locus? Root Locus Sketching a Root Locus

Root Locus: Example 6

Plant (D(s) = K)

$$G(s) = \frac{1}{s(s+2)[(s+1)^2 + 4]} = L(s)$$

$$a(s) = s^4 + 4s^3 + 9s^2 + 10s \qquad b(s) = 1$$

$$b\frac{da}{ds} - a\frac{db}{ds} = 0 \qquad s = -1, -1 \pm 1.2j$$

```
sys=tf(1,[1 4 9 10 0]);
rlocus(sys)
axis([-7 5 -6 6])
```


Why use Root Locus? Root Locus Sketching a Root Locus

Root Locus: Example 6

Root Locus

What is Root Locus	Gain Controller
Root Locus Design	Lead Compensation
Exercises	Lag Compensation

Outline

1 What is Root Locus

- Why use Root Locus?
- Root Locus
- Sketching a Root Locus

2 Root Locus Design

- Gain Controller
- Lead Compensation
- Lag Compensation

What is Root Locus	Gain Controller
Root Locus Design	Lead Compensation
Exercises	Lag Compensation

Root Locus Design

• **Objective**: Select a particular value of *K* that will meet the specifications for static and dynamic response

$$1+KG(s)=0$$

• Magnitude Condition:

$$K = \frac{1}{|G(s)|}$$

What is Root Locus	Gain Controller
Root Locus Design	Lead Compensation
Exercises	Lag Compensation

Root Locus Design

Gain Controller Lead Compensation Lag Compensation

Gain Controller?


```
sys=tf(1,[10 1 0]);
rlocus(sys)
axis([-0.15 0.005 -0.06 0.06])
grid
```


Gain Controller Lead Compensation Lag Compensation

Gain Controller?

Root Locus

Lecture 5 Classical Control

Gain Controller Lead Compensation Lag Compensation

Dynamic Compensation

• **Objective**: If satisfactory process dynamics cannot be obtained by a gain adjustment alone then some modification or compensation of the dynamics is needed

1 + KD(s)G(s) = 0

- Lead and Lag Compensation:
 - Lead Compensation acts mainly to lower rise time and decrease the transient overshoot: $D(s) = \frac{s+z}{s+p}, z < p$
 - Lag Compensation acts mainly to improve the steady-state accuracy: D(s) = s+z / s+p, z > p

What is Root Locus	Gain Controller
Root Locus Design	Lead Compensati
Exercises	Lag Compensatio

Lead Compensation

- Approximates PD control
- Moves the locus to the *left* and typically improves the system *damping*
- Zero and pole selection:
 - The zero is placed in the neighborhood of the closed-loop ω_n as determined by rise-time or settling-time requirements
 - The pole is located at a distance *3 to 20* times the value of the zero location

Lead Compensation Lag Compensation

Lead Compensation: Example

System

$$G(s) = rac{{\cal K}}{s(s+1)}$$
 $D_1(s) = s+2$ $D_2(s) = rac{s+2}{s+20}$ $D_3(s) = rac{s+2}{s+10}$

```
sys=tf(1,[1 1 0]);
D1=tf([1 2],[1]);
D2=tf([1 2],[1 20]);
D3=tf([1 2],[1 10]);
rlocus(sys,D1*sys,D2*sys,D3*sys)
axis([-21 1 -15 15])
```


Lead Compensation Lag Compensation

Lead Compensation: Example

Root Locus

Classical Control

What is Root Locus Root Locus Design Exercises Lag Compensation

Lead Compensation: Design Example

Design the closed loop response for the following system to have a damping ratio $\zeta > 0.5$ and a natural frequency $\omega_n > 7 \frac{rad}{sec}$.

System $G(s) = \frac{K}{s(s+1)}$ $D_1(s) = \frac{s+2}{s+10}$ $D_2(s) = \frac{s+6}{s+30}$

```
sys=tf(1,[1 1 0]);
D1=tf([1 2],[1 10]);
D2=tf([1 6],[1 30]);
rlocus(D1*sys,D2*sys)
axis([-31 1 -70 70])
```

Gain Controller Lead Compensation Lag Compensation

Lead Compensation: Design Example

0.08 0.04 0.36 0.26 0.19 0.13 60 60 50 0.52 System: untitled2 40 Gain: 682 40 Pole: -11.6 + 19.9i Damping: 0.504 System: untitled1 Overshoot (%): 16 Gain: 60.2 Frequency (rad/sec): 23. 0.8 -4.27 + 5.57i Pole 20 Damping: 0.609 Imaginary Axis Overshoot (%): 8.98 Frequency (rad/sec): 7.02 0 80 10 -20 20 0.8 30 -40 40 0.52 50 -60 0.04 0.36 0.26 0.19 0.13 0.08 -30 -25 -20 -15 -10 -5 Real Axis

Root Locus

What is Root Locus Root Locus Design Exercises Lag Compensation

Lead Compensation: Antenna

Step 1

Select the lead compensator as $D(s) = \frac{s+0.9}{s+10}$

sysDG=tf(1,[10 1 0])*tf([1 0.9],[1 10]);

Step 2

Draw the root locus to determine K

rlocus(sysDG)

What is Root Locus Root Locus Design Exercises Lag Compensation

Lead Compensation: Antenna

Step 3

Construct the closed-loop system and check whether the requirements are satisfied or not

step(feedback(K*sysDG,1))

Step 4

If the requirements are not satisfied, iterate the design procedure

What is Root Locus	Gain Controller
Root Locus Design	Lead Compensation
Exercises	Lag Compensation

Lag Compensation

- Approximates PI control
- Creates a zero and a pole:
 - Effect of the zeros are to move the locus to the left
 - Effect of the poles are to press the locus towards the right
- Zero and pole selection:
 - Select a pole near s = 0
 - Select the zero nearby such that the *dipole* does not significantly interfere with the response
- The lag compensation usually degrades stability

Gain Controller Lead Compensation Lag Compensation

Lag Compensation: Example

System

$$G(s) = \frac{K}{s(s+1)}$$
$$D_1(s) = \frac{s+2}{s+20}$$

$$D_2(s) = rac{s+0.1}{s+0.01}$$

```
sys=tf(1,[1 1 0]);
D1=tf([1 2],[1 20]);
D2=tf([1 0.1],[1 0.01]);
rlocus(D1*D2*sys)
axis([-21 1 -15 15])
```


Gain Controller Lead Compensation Lag Compensation

K

Lag Compensation: Example

Root Locus

Gain Controller Lead Compensation Lag Compensation

Lag Compensation: Example

axis([-2 0.1 -0.5 0.5])

Book: Feedback Control

- Exercise 5.2 in FC pp 296
- Consider a DC motor control using a PI controller, Where the motor and PI controller are modeled as

$$G(s)=rac{K}{(au s+1)}, \ D(s)=rac{K_p(T_is+1)}{T_is}$$

with parameters K = 30, $\tau = 0.35$, $T_i = 0.041$. Use the root locus method to determine the largest valle of K_p such that $\zeta = 0.45$.

Try to use the root locus method to design a lead compensator for the examplified antenna system.

