Digital Control
Lecture 1
Questions

• How to represent digital signals & systems?
• How to obtain an equivalent digital representation of a analog system?
• How to analyze digital signal/system features?
• How to develop a digital controller?
• What needs to be concerned when implementing a digital controller?
Outline

1. Discrete Transfer Functions
2. Discretization
Outline

1. Discrete Transfer Functions
 - z-Transform
 - Transfer Function

2. Discretization
 - Introducing Zero Order Hold
 - Numerical Integration
 - Zero-Pole Matching
 - Stability
Definition of \(z \)-transform

For a discrete signal \(e[k] \) with values \(e_0, e_1, \ldots, e_k, \ldots \) the \(z \)-transform is given by:

\[
E(z) \triangleq \mathcal{Z}\{e[k]\} = \sum_{k=-\infty}^{\infty} e_k z^{-k}
\]

Discrete signal can be obtained by sampling a continuous signal with a sample time \(T \)
Description of a structured signal

Given a structural relationship between sequences a z-domain equivalent can be obtained:

\[
\sum_{k=-\infty}^{\infty} e_k z^{-k} = 1 + a_1 \sum_{k=-\infty}^{\infty} e_{k-1} z^{-k}
\]

Sequences

\[
E(z) = \frac{1}{1 - a_1 z^{-1}}
\]
Discrete transfer functions

Given input signal $E(z)$ and output signal $U(z)$ a transfer function describing their relationship can be given as:

$$H(z) = \frac{U(z)}{E(z)}$$
Transfer function expressions

\[H(z) = \frac{b_0 + b_1 z^{-1} + \cdots + b_m z^{-m}}{1 + a_1 z^{-1} + a_2 z^{-2} + \cdots + a_n z^{-n}} \]
\[= \frac{b_0 z^n + b_1 z^{n-1} + \cdots + b_m z^{n-m}}{z^n + a_1 z^{n-1} + a_2 z^{n-2} + \cdots + a_n} \quad n \geq m \]
\[= \frac{b(z)}{a(z)} \]

MATLAB

\[\text{sys} = \text{tf(num,den,Ts)} \]
Discrete System Models

Zeros and poles - General formula

\[H(z) = \frac{U(z)}{E(z)} = K \frac{\prod_{k=1}^{m}(z - z_k)}{\prod_{i=1}^{n}(z - p_i)} \]

MATLAB

sys=zpk(z,p,k,Ts)
Outline

1. Discrete Transfer Functions
 - z-Transform
 - Transfer Function

2. Discretization
 - Introducing Zero Order Hold
 - Numerical Integration
 - Zero-Pole Matching
 - Stability
Basic Digital Control System

- Ref.
- Feedforward
- Clock
- Feedback
- D/A
- Act.
- Plant
- A/D
- Sensor
- Disturbances
- Output
Zero Order Hold effect on continuous system

Basic property of ZOH
- Input to ZOH
 - Unit pulse, \(\delta(kT) \)
- Output from ZOH
 - Square pulse, \(1(kT) - 1(kT - T) \)

Effect on continuous system \(G(s) \) after ZOH

\[
Y(s) = \frac{1}{s} G(s) - e^{-Ts} \frac{1}{s} G(s)
\]

\[
= \left(1 - e^{-Ts}\right) \frac{G(s)}{s}
\]
Compensating for ZOH effect in z-transform

Incorporating ZOH in z-transform

\[G(z) = Z \{ Y(kT) \} \]
\[= Z \left\{ \left(1 - e^{-Ts} \right) \frac{G(s)}{s} \right\} \]

Converting to z-domain

\[G(z) = (1 - z^{-1}) Z \left\{ \frac{G(s)}{s} \right\} \]
ZOH discretization example

Continuous system

\[
G(s) = \frac{a}{s + a}
\]

ZOH equivalent

\[
G(z) = \frac{1 - e^{-aT}}{z - e^{-aT}}
\]
Numerical integration of differential equations

Continuous system

\[G(s) = \frac{U(s)}{E(s)} = \frac{a}{s + a} \]
\[\dot{u}(t) + au(t) = ae(t) \]

Solving differential equation

\[u(t) = u(kT - T) + \int_{kT-T}^{kT} -au(\tau) + ae(\tau) d\tau \]
Approximations of s for different rules

Forward rectangular rule

$$s \approx \frac{z - 1}{T}$$

Backward rectangular rule

$$s \approx \frac{z - 1}{Tz}$$

Trapezoidal rule

$$s \approx \frac{2(z - 1)}{T(z + 1)}$$
Direct mapping of zeros/poles

Pole mapping

\[s_p = -a + jb \quad \Rightarrow z_p = e^{-aT} \angle bT \]

Zero mapping (finite)

\[s_z = -a + jb \quad \Rightarrow z_z = e^{-aT} \angle bT \]
Direct mapping of zeros/ poles - continued

Zero mapping (infinite, no delay)

\[s_z = \infty \Rightarrow z_z = -1 \]

Zero mapping (infinite, with \(n \) sample delay)

\[s_z = \infty \Rightarrow z_z = \infty \ (n \text{ zeros}) \]
\[s_z = \infty \Rightarrow z_z = -1 \ (\text{remaining zeros}) \]
Gain matching

\[H(s)|_{s=\omega_0} = H(z)|_{z=e^{T\omega_0}} \]

\(\omega_0 \) is usually 0 in order to match steady-state gains
Discretization in MATLAB

```matlab
sysd = c2d(sys, Ts, method)
```

Method:
- `'zoh'`: Zero order hold
- `'foh'`: First order hold (academic)
- `'tustin'`: Bilinear approximation (trapezoidal)
- `'prewarp'`: Tustin with a specific frequency used for prewarp
- `'matched'`: Matching continuous poles with discrete
Continuous systems

The system is BIBO stable if and only if the impulse response $h(t)$ is absolutely integrable.

Discrete systems

The system is BIBO stable if and only if the impulse response $h[n]$ is absolutely summable.
Stability - Characteristic Roots

Asymptotic internal stability

Continuous systems
All poles of the system are strictly in the LHP of the s-plane

Discrete systems
All poles of the system are strictly inside the unit circle of the z-plane
Book: Digital Control

- Problem 6.3 a.i-a.vi+b (use MATLAB when possible)
- Problem 6.4 a.i-a.vi+b (use MATLAB when possible)