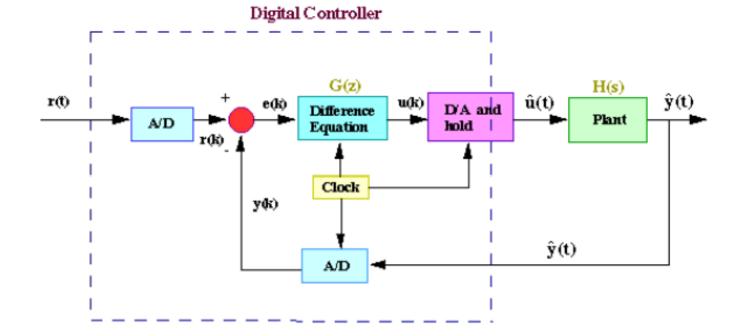


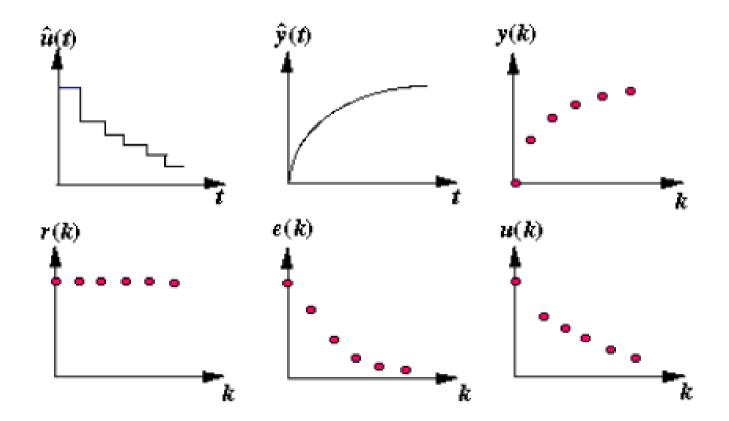
Digital Control Lecture 2

- Sampling Rate Selection
- 2 Equivalents Between Continuous and Digital Systems

What have we talked about in MM1?

- •Discrete transfer function
- •Discretization (ZOH)





Discrete Transfer Functions Discretization Exercises

z-Transform Transfer Function

Discrete transfer functions - continued

Transfer function expressions

$$H(z) = \frac{b_0 + b_1 z^{-1} + \dots + b_m z^{-m}}{1 + a_1 z^{-1} + a_2 z^{-2} + \dots + a_n z^{-n}}$$
$$= \frac{b_0 z^n + b_1 z^{n-1} + \dots + b_m z^{n-m}}{z^n + a_1 z^{n-1} + a_2 z^{n-2} + \dots + a_n} \qquad n \ge m$$
$$= \frac{b(z)}{a(z)}$$

MATLAB

sys=tf(num,den,Ts)

Discrete Transfer Functions Discretization Exercises Introducing Zero Order Hold Numerical Integration Zero-Pole Matching Stability

Zero Order Hold effect on continuous system

Basic property of ZOH

- Input to ZOH
 - Unit pulse, $\delta(kT)$
- Output from ZOH
 - Square pulse, 1(kT) 1(kT T)

Converting to z-domain

$$G(z) = (1 - z^{-1}) \mathcal{Z}\left\{\frac{G(s)}{s}\right\}$$

Discrete Transfer Functions Discretization Exercises Introducing Zero Order Hold Numerical Integration Zero-Pole Matching Stability

Discretization in MATLAB

MATLAB

```
sysd=c2d(sys,Ts,method)
```

method:

- 'zoh': Zero order hold
- 'foh': First order hold (academic)
- 'tustin': Bilinear approximation (trapezoidal)
- 'prewarp': Tustin with a specific frequency used for prewarp
- 'matched': Matching continuous poles with discrete

Sampling Rate Selection	Sampling Theorem
Equivalents Between Continuous and Digital Systems	Smoothness
Exercises	Effect of Noise

Outline

Sampling Rate Selection

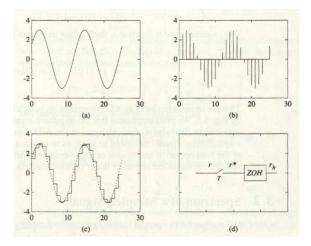
- Sampling Theorem
- Smoothness
- Effect of Noise

2 Equivalents Between Continuous and Digital Systems

- Sampling Effect
- System Specifications

Sampling Theorem Smoothness Effect of Noise

Sampling of a continuous signal



Sampling Theorem Smoothness Effect of Noise

Representations of sampled signals - time domain

Sum of impulses

$$r^*(t) = \sum_{k=-\infty}^{\infty} r(t)\delta(t-kT)$$

Fourier series

$$r^*(t) = r(t) rac{1}{T} \sum_{n=-\infty}^{\infty} e^{jn2\pi t/T}$$

Sampling Theorem Smoothness Effect of Noise

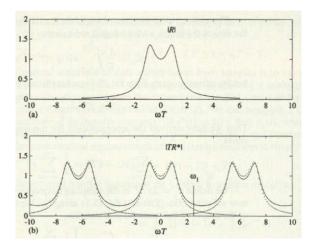
Representations of sampled signals - Laplace domain

Laplace representation

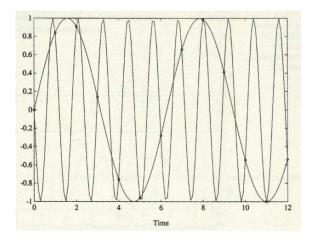
$$R^{*}(s) = \int_{-\infty}^{\infty} r(t) \left\{ \frac{1}{T} \sum_{n=-\infty}^{\infty} e^{jnt\omega_{s}} \right\} e^{-st} dt \qquad \omega_{s} = \frac{2\pi}{T}$$
$$= \frac{1}{T} \sum_{n=-\infty}^{\infty} \int_{-\infty}^{\infty} r(t) e^{-(s-jn\omega_{s})t} dt$$
$$= \frac{1}{T} \sum_{n=-\infty}^{\infty} R(s-jn\omega_{s})$$

Sampling Theorem Smoothness Effect of Noise

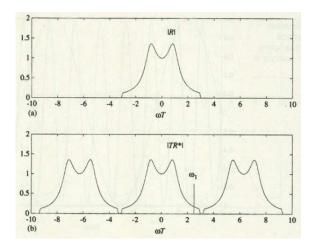
Spectrum of sampled signal



Aliasing



Anti-aliasing



Use anti-aliasing filter before sampling a signal!

Sampling Theorem Smoothness Effect of Noise

Sampling theorem

Theoretical lower limit

$$\frac{\omega_s}{\omega_b} > 2$$

 ω_s : sampling frequency ω_b : required closed-loop bandwidth

Not practical!

Sampling Rate Selection	Sampling Theorem
Equivalents Between Continuous and Digital Systems	Smoothness
Exercises	Effect of Noise

Smooth response

Practical limits

$$20 < rac{\omega_s}{\omega_b} < 40$$

 ω_s : sampling frequency

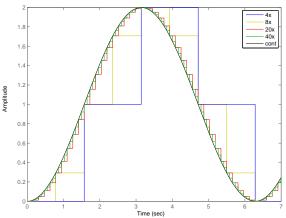
 ω_b : required closed-loop bandwidth

External requirements to minimizing sampling time

- Bandwidth of reference
- Human interaction
- Sensitivity to delays

Sampling Theorem Smoothness Effect of Noise

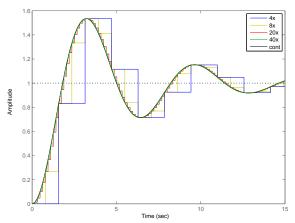
Sampling of sinusoid



Step Response

Sampling Theorem Smoothness Effect of Noise

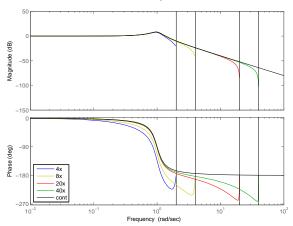
Sampling of damped system



Step Response

Sampling Theorem Smoothness Effect of Noise

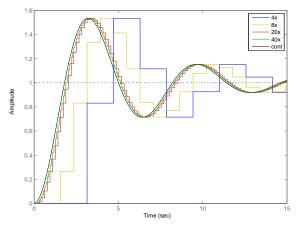
Effect of sampling on frequency response



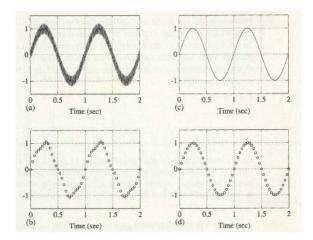
Bode Diagram

Sampling of damped system with 1 sample delay

Step Response



Effect of noise on sampling



Prefiltering is important!

Requirements to prefilter

Breakpoint of prefilter, ω_c

$$\omega_b < \omega_c < \frac{\omega_s}{2}$$

 ω_s : sampling frequency

 ω_b : required closed-loop bandwidth

 ω_c : breakpoint of filter

Prefilter should filter lowest noise frequencies while not disturbing highest system frequencies!

Outline

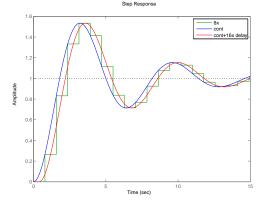
- Sampling Rate Selection
 - Sampling Theorem
 - Smoothness
 - Effect of Noise

2 Equivalents Between Continuous and Digital Systems

- Sampling Effect
- System Specifications

Sampling Effect System Specifications

Reconstruction of signal from ZOH



Reconstructed signal corresponds to continuous system with half-sample delay

Sampling Effect System Specifications

Accommodating for sampling effect delay

Approximation of delay

$$e^{-sT/2} pprox rac{2/T}{s+2/T}$$

Accommodation

Investigate effect of half-sample delay on continuous system before digitizing:

- Root locus wrt. T
- Analyze using frequency based methods
 - Effect on phase margin/damping

Digital equivalents of continuous-time specifications

Transient response

- Overshoot/damping, M_p, ζ
- Rise time, ω_n
- Settling time, ω_n, ζ, σ

Steady-state response

- Steady-state: $z \to 1$, $(\lim_{k \to \infty} f(k) = \lim_{z \to 1} (z 1)F(z))$
- System type: number of pure integrators in open-loop, (z = 1)
- System input

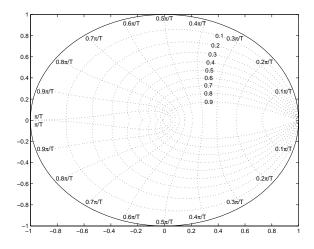
• Step,
$$\frac{z}{z-1}$$

• Ramp,
$$\frac{Tz}{(z-1)^2}$$

• Parabola,
$$\frac{T^2}{2} \frac{z(z+1)}{(z-1)^3}$$

Sampling Effect System Specifications

Time-domain specifications in z-domain



Control Tutorials for Matlab

Digital Control Tutorial

Introduction Zero-order hold equivalence Conversion using c2dm Stability and transient response Discrete Root-Locus

Key Matlab Commands used in this tutorial are: c2dm pzmap zgrid dstep stairs rlocus Note: Matlab commands from the control system toolbox are highlighted in red. For analyzing the transient response from pole locations in the z-plane, the following three equations used in continuous system designs are still applicable.

$$\xi \omega_{h} \geq \frac{4.6}{\text{Ts}}$$

$$\omega_{h} \geq \frac{1.8}{\text{Tr}}$$

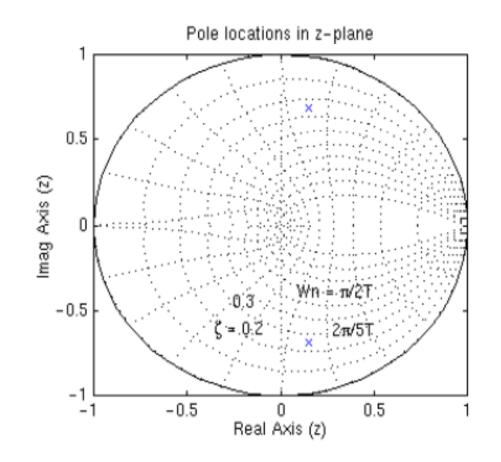
$$\xi \geq \sqrt{\frac{\left(\frac{\ln Mp}{\pi}\right)^{2}}{1 + \left(\frac{\ln Mp}{\pi}\right)^{2}}}$$

where

- zeta = Damping ratio
- Wn = Natural frequency (rad/sec)
- Ts = Settling time
- Tr = Rise time
- Mp = Maximum overshoot

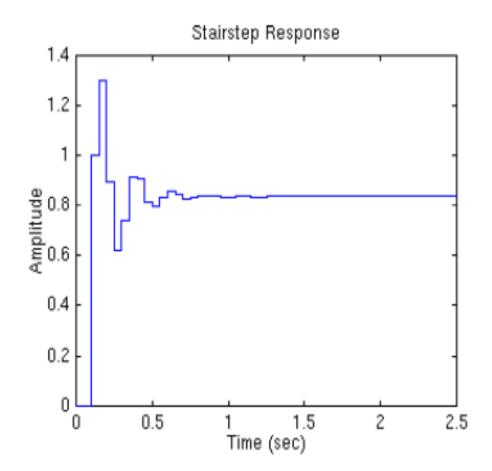
Important:

The natural frequency (Wn) in z-plane has the unit of rad/sample, but when you use the equations shown above, the Wn must be in the unit of rad/sec.



From this plot, we see poles are located approximately at the natural frequency of 9pi/20T (rad/sample) and the damping ratio of 0.25. Assuming that we have the sampling time of 1/20 sec (which leads to Wn = 28.2 **rad/sec**) and using three equations shown above, we can determine that this system should have the rise time of 0.06 sec, the settling time of 0.65 sec and the maximum overshoot of 45% (0.45 more than the steady-state value). Let's obtain the step response and see if these are correct. Add the following commands to the above m-file and rerun it in the command window. You should get the following step response.

```
[x] = dstep (numDz,denDz,51);
t = 0:0.05:2.5;
stairs (t,x)
```



As you can see from the plot, all of the rise time, the settling time and the overshoot came out to be what we expected. We proved you here that we can use the locations of poles and the above three equations to analyze the transient response of the system.