

	A STREET
Discretization	
 Discretization Introducing Zero Order Hold Numerical Integration Zero-Pole Matching Stability 	 Basic property of ZOH Input to ZOH Unit pulse, δ(kT) Output from ZOH Square pulse, 1(kT) - 1(kT - T)
Lecture 1 Digital Con	$G(z) = (1 - z^{-1}) \mathcal{Z}\left\{\frac{G(s)}{s}\right\}$
	MATLAB
$s_p = -a + jb \qquad \Rightarrow z_p = e^{-aT} \angle bT$	method: • 'zoh': Zero order hold
Zero mapping (finite)	• 'foh': First order hold (academic)
$s_z = -a + jb$ $\Rightarrow z_z = e^{-aT} \angle bT$	 'tustin': Bilinear approximation (trapezoidal) 'prewarp': Tustin with a specific frequency used for prewarp 'matched': Matching continuous poles with discrete

