Stochastic Processes II (FP-7.5) Solution Set 5

Problem 5.1 (Problem 7.5 in Shanmugan)

Solution:

- Signal model:

$$
X=m Y+W
$$

where

- m is a known constant;
- $W \sim \mathcal{N}\left(\mu_{W}, \sigma_{W}^{2}\right)$;
- Y is a random variable;
- W and Y are independent.
- LMMSEE:

$$
\hat{Y}=a+b X
$$

Hence

$$
\boldsymbol{h}=[a, b]^{T} .
$$

The coefficients are obtained from the equations (see page 4-5 of the lecture notes)

$$
\begin{align*}
\boldsymbol{h}^{-} & =\left(\Sigma_{X X}\right)^{-1} \Sigma_{X Y} \tag{1}\\
h_{0} & =\mu_{Y}-\left(\boldsymbol{h}^{-}\right)^{T} \mu_{X} . \tag{2}
\end{align*}
$$

Here:

- $\boldsymbol{h}^{-}=b, h_{0}=a ;$
- $\Sigma_{X X}$:

$$
\begin{aligned}
\Sigma_{X X} & =\sigma_{X}^{2} \\
& =m^{2} \sigma_{Y}^{2}+\sigma_{W}^{2} ;
\end{aligned}
$$

- $\Sigma_{X Y}$:

$$
\begin{aligned}
\Sigma_{X Y} & =E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right] \\
& =E\left\{\left[m Y+W-\left(m \mu_{Y}+\mu_{W}\right)\right]\left(Y-\mu_{Y}\right)\right\} \\
& =E\left\{\left[m\left(Y-\mu_{Y}\right)+W-\mu_{W}\right]\left(Y-\mu_{Y}\right)\right\} \\
& =m E\left[\left(Y-\mu_{Y}\right)^{2}\right]+\underbrace{E\left[\left(W-\mu_{W}\right)\left(Y-\mu_{Y}\right)\right]}_{=E\left[W-\mu_{W}\right] \cdot E\left[Y-\mu_{Y}\right]=0} \\
& =m \sigma_{Y}^{2} ;
\end{aligned}
$$

$$
\cdot \mu_{X}=m \mu_{Y}+\mu_{W} .
$$

Insertion in (1) and (2) yields

$$
\begin{aligned}
b & =\frac{m \sigma_{Y}^{2}}{m^{2} \sigma_{Y}^{2}+\sigma_{W}^{2}} \\
& =\frac{1}{m} \cdot \gamma
\end{aligned}
$$

where

$$
\gamma=\frac{1}{1+\frac{\sigma_{V}^{2}}{m^{2} \sigma_{Y}^{2}}}
$$

and

$$
\begin{aligned}
a & =\mu_{Y}-\frac{\gamma}{m}\left(m \mu_{Y}+\mu_{W}\right) \\
& =(1-\gamma) \mu_{Y}-\frac{\gamma}{m} \mu_{W}
\end{aligned}
$$

So that the LMMSEE is given by

$$
\hat{Y}=\left[(1-\gamma) \mu_{Y}-\frac{\gamma}{m} \mu_{W}\right]+\frac{\gamma}{m} X
$$

with

$$
\gamma=\left(1+\frac{\sigma_{W}^{2}}{m^{2} \sigma_{Y}^{2}}\right)^{-1}
$$

Problem 5.2 (Problem 7.6 in Shanmugan)

Solution:

- Signal model:

$$
[X, Y]^{T} \sim \mathcal{N}\left(\left[\begin{array}{l}
\mu_{X} \\
\mu_{Y}
\end{array}\right],\left[\begin{array}{cc}
\sigma_{X}^{2} & \rho \sigma_{X} \sigma_{Y} \\
\rho \sigma_{X} \sigma_{Y} & \sigma_{Y}^{2}
\end{array}\right]\right)
$$

with

$$
\rho=\frac{E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]}{\sigma_{X} \sigma_{Y}}
$$

denoting the correlation coefficient of X and Y.

- Conditional expectation $E[Y \mid X=x]$:

From (2.66a) in Shanmugan, we obtain

$$
\begin{aligned}
E[Y \mid X=x] & =\mu_{Y}+\underbrace{\Sigma_{Y X}}_{\rho \sigma_{X} \sigma_{Y}} \underbrace{\Sigma_{X X}^{-1}}_{\sigma_{X}^{2}}\left(x-\mu_{X}\right) \\
& =\mu_{Y}+\rho \frac{\sigma_{Y}}{\sigma_{X}}\left(x-\mu_{X}\right), \\
E[Y \mid X=x] & =\underbrace{\mu_{Y}-\rho \frac{\sigma_{Y}}{\sigma_{X}} \mu_{X}}_{a}+\underbrace{\rho \frac{\sigma_{Y}}{\sigma_{X}}}_{b} x .
\end{aligned}
$$

- Mean square error:

According to the lecture notes, the mean square error can be written as:

$$
\begin{aligned}
E\left[(Y-\hat{Y})^{2}\right] & =E[(Y-\hat{Y}) Y] \\
& =E\left[Y^{2}\right]-E[\hat{Y} Y]
\end{aligned}
$$

(See (3.3b) in the lecture notes).
Therefore,

$$
\begin{align*}
E\left\{[Y-(a+b X)]^{2}\right\} & =E\{[Y-(a+b X)] \cdot Y\} \\
& =E\{[Y Y-(a+b X) Y]\} \\
& =E\left[Y^{2}\right]-a E[Y]-b E[X Y] \\
& =E\left[Y^{2}\right]-a \mu_{Y}-b E[X Y] . \tag{3}
\end{align*}
$$

We know from the lecture notes (page 4-1, definition of variance of Y) that

$$
E\left[Y^{2}\right]=\mu_{Y}^{2}+\Sigma_{Y Y},
$$

and

$$
\begin{aligned}
a & =\mu_{Y}-b \mu_{X}, & & (3.4 \mathrm{~b}) \text { in the lecture notes } \\
b & =\rho \frac{\sigma_{Y}}{\sigma_{X}} . & & \text { (3.4a) in the lecture notes }
\end{aligned}
$$

Inserting in (3) yields

$$
\begin{align*}
E\left\{[Y-(a+b X)]^{2}\right\} & =\sigma_{Y}^{2}+\mu_{Y}^{2}-\mu_{Y}^{2}+b \mu_{X} \mu_{Y}-b E[X Y] \\
& =\sigma_{Y}^{2}+\rho \frac{\sigma_{Y}}{\sigma_{X}} \mu_{X} \mu_{Y}-\rho \frac{\sigma_{Y}}{\sigma_{X}} E[X Y] \\
& =\sigma_{Y}^{2}-\rho \frac{\sigma_{Y}}{\sigma_{X}}\left(E[X Y]-\mu_{X} \mu_{Y}\right) . \tag{4}
\end{align*}
$$

According to the definition of $\Sigma_{X Y}$ in the lecture notes (page 4-1), $\Sigma_{X Y}=E[X Y]-$ $\mu_{X} \mu_{Y}$, (4) becomes finally

$$
\begin{aligned}
E\left\{[Y-(a+b X)]^{2}\right\} & =\sigma_{Y}^{2}-\rho \frac{\sigma_{Y}}{\sigma_{X}} E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right] \\
& =\sigma_{Y}^{2}[1-\rho \underbrace{\frac{E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]}{\sigma_{X} \sigma_{Y}}}_{=\rho}] \\
E\left\{[Y-(a+b X)]^{2}\right\} & =\sigma_{Y}^{2}\left(1-\rho^{2}\right) .
\end{aligned}
$$

Problem 5.3 (Problem 7.8 in Shanmugan)

Solution

Let us consider the two linear estimators:

- the LMMSEE:

$$
\hat{Y}=h_{0}+\sum_{i=1}^{n} h_{i} X(i) ;
$$

- an arbitrary linear estimator:

$$
\check{Y}=b_{0}+\sum_{i=1}^{n} b_{i} X(i) .
$$

Then we have to show that

$$
\begin{equation*}
E\left[(Y-\check{Y})^{2}\right] \geq E\left[(Y-\hat{Y})^{2}\right] . \tag{5}
\end{equation*}
$$

Let us start with

$$
\begin{align*}
E\left[(Y-\check{Y})^{2}\right] & =E\left\{[(Y-\hat{Y})+(\hat{Y}-\check{Y})]^{2}\right\} \\
& =E\left[(Y-\hat{Y})^{2}\right]+E\left[(Y-\check{Y})^{2}\right]+2 E[(Y-\hat{Y})(\hat{Y}-\check{Y})] \tag{6}
\end{align*}
$$

From the orthogonality principle, we know that

$$
E[(Y-\hat{Y}) X(i)]=0, \quad i=1, \ldots, n
$$

\hat{Y} and \check{Y} are linear combinations of $X(1), \ldots, X(n)$, therefore

$$
\begin{aligned}
& E[(Y-\hat{Y}) \hat{Y}]=0, \\
& E[(Y-\hat{Y}) \check{Y}]=0 .
\end{aligned}
$$

Hence the last term in (6) vanishes:

$$
\begin{align*}
E[(Y-\hat{Y})(\hat{Y}-\check{Y})] & =\underbrace{E[(Y-\hat{Y}) \hat{Y}]}_{=0}-\underbrace{E[(Y-\hat{Y}) \check{Y}]}_{=0} \\
& =0, \tag{7}
\end{align*}
$$

and (5) is proved to be true.

