
Stochastic Processes II (FP-7.5)
Solution Set 6

Problem 6.1 (Problem 7.15 in Shanmugan)

Solution:

• Orthogonality principle

E
[(

Y (n) − Ŷ (n)
)
X(n − k)

]
= 0, ∀k = −M, ..., +M (1)

Substituting (1) from the exercise set in the left-hand of equation (1) above and
applying the property of WSS process yields

E[Y (n)X(n − k)]
︸ ︷︷ ︸

=E[X(n)Y (n+k)]
=RXY (k)

−

+M∑

m=−M

h(m) E[X(n − k)X(n − m)]
︸ ︷︷ ︸

=E[X(n)X(n+k−m)]
=RXX(k−m)

= 0

Hence

RXY (k) =
+M∑

m=−M

h(m)RXX(k − m), k = −M, ..., +M

We can rewrite the 2M + 1 equations above in a matrix form as










RXY (−M)
RXY (−M + 1)

...
RXY (M − 1)

RXY (M)










︸ ︷︷ ︸

RXY

=










RXX(0) RXX(1) . . . RXX(2M − 1) RXX(2M)
RXX(1) RXX(0) . . . RXX(2M − 2) RXX(2M − 1)

...
...

...
...

RXX(2M − 1) RXX(2M − 2) . . . RXX(0) RXX(1)
RXX(2M) RXX(2M + 1) . . . RXX(1) RXX(0)










︸ ︷︷ ︸

RXX

·










h(−M)
h(−M + 1)

...
h(M − 1)

h(M)










︸ ︷︷ ︸

h

(2)

• Coefficient vector of the LMMSEE:

Provided RXX is invertible,
h = R

−1
XX

RXY .

Such a LMMSEE is also called a finite Wiener filter.
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Problem 6.2

Solution:

a) Find the Wiener-Hopf equations for the coefficients of the noncausal Wiener filter
of length 2M + 1 and the causal Wiener filter of length M + 1 estimating Y (n)
based on the observation of X(n).

- Non-causal finite Wiener filter with finite length 2M + 1:

Ŷ (n) =
+M∑

m=−M

h(m)X(n − m).

We can make use of the result in Problem 7.15 to find the coefficients of the
noncausal Wiener filter:

RXY (k) = E[X(n)Y (n + k)]

= E[(Y (n) + W (n))Y (n + k)]

= E[Y (n)Y (n + k)]
︸ ︷︷ ︸

=RY Y (k)

+ E[W (n)Y (n + k)]
︸ ︷︷ ︸

=0

= RY Y (k)

RXX(k) = E[X(n)X(n + k)]

= E[(Y (n) + W (n))(Y (n + k) + W (n + k))]

= E[Y (n)Y (n + k)] + E[W (n)W (n + k)]

= RY Y (k) + RWW (k)

= RY Y (k) +
1

4
δ(k)

In this case, (2) is given by














0
...
1
4
3
4
1
4
...
0














=














1 1
4

0 0 . . . 0 0
1
4

1 1
4

0 . . . 0 0
0 1

4
1 1

4
. . . 0 0

...
...

...
0 0 . . . 1

4
1 1

4
0

0 0 . . . 0 1
4

1 1
4

0 0 . . . 0 0 1
4

1














·














h(−M)
...

h(−1)
h(0)
h(1)

...
h(M)














. (3)
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Solving (3) yields














h(−M)
...

h(−1)
h(0)
h(1)

...
h(M)














=














1 1
4

0 0 . . . 0 0
1
4

1 1
4

0 . . . 0 0
0 1

4
1 1

4
. . . 0 0

...
...

...
0 0 . . . 1

4
1 1

4
0

0 0 . . . 0 1
4

1 1
4

0 0 . . . 0 0 1
4

1














−1 












0
...
1
4
3
4
1
4
...
0














.

- Causal finite Wiener filter with length of M + 1:

The causal Wiener filter is of the form

Ŷc(n) =
M∑

m=0

h(m)X(n − m)

Applying the orthogonality principle, [h(0), h(1), . . . , h(M)]T satisfies the lin-
ear equation








RXY (0)
RXY (1)

...
RXY (M)








=








RXX(0) RXX(1) . . . RXX(M)
RXX(1) RXX(0) . . . RXX(M − 1)

...
RXX(M) RXX(M − 1) . . . RXX(0)















h(0)
h(1)

...
h(M)








.

Inserting the values yields










3
4
1
4

0
...
0










=










1 1
4

0 . . . 0 0
1
4

1 1
4

. . . 0 0
...

...
0 0 0 1

4
1 1

4

0 0 0 0 1
4

1



















h(0)
h(1)

...
h(M − 1)

h(M)










(4)

Solving (4) yields










h(0)
h(1)

...
h(M − 1)

h(M)










=










1 1
4

0 . . . 0 0
1
4

1 1
4

. . . 0 0
...

...
0 0 0 1

4
1 1

4

0 0 0 0 1
4

1










−1 








3
4
1
4

0
...
0










.

b) Calculate the filter coefficients for M = 1. Compute the mean-square estimation
errors resulting when using both filters.
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- Non-causal finite Wiener filter with finite length 2M + 1, M = 1:

When M = 1, (3) reduces to




1
4
3
4
1
4



 =





1 1
4

0
1
4

1 1
4

0 1
4

1



 ·





h(−1)
h(0)
h(1)



 .

Solving yields




h(−1)
h(0)
h(1)



 =





15
14

−2
7

1
14

−2
7

8
7

−2
7

1
14

−2
7

15
14









1
4
3
4
1
4





=





1
14
5
7
1
14





The mean-square estimation error is calculated to be

E
[(

Y (n) − Ŷc(n)
)2]

= RY Y (0) −
M∑

m=−M

h(m)RXY (m).

When M = 1, the mean-square estimation error reads

E[(Y (n) − Ŷ (n))2] = RY Y (0) −
+1∑

m=−1

h(m)RXY (m)

=
3

4
− [

1

14
·
1

4
+

5

7
·
3

4
+

1

14
·
1

4
]

=
5

28
.

Comment:

Using the same method, we calculated different non-causal Wiener filters with
M = 0, 1, 2, .., 10. Figure (1) shows that as M increases the mean-square
estimation error curve (marked by ∗) converges to a stable level that coincides
with the MSE of the non-causal Wiener filter. It can be concluded that the
finite Wiener filter with M = 3 provides a good approximation of the non-
causal Wiener filter.

- Causal finite Wiener filter with finite length 2M + 1, M = 1:

When M = 1, (4) reduces to
[

3
4
1
2

]

=

[
1 1

4
1
4

1

] [
h(0)
h(1)

]

.

Thus the coefficient is given by
[
h(0)
h(1)

]

=

[
16
15

− 4
15

− 4
15

16
15

] [
3
4
1
2

]

=

[
11
15
1
15

]

.
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Figure 1: Mean-square estimation error for the non-causal and the causal finite Wiener
filters versus M .

The mean-square estimation error is calculated to be

E
[(

Y (n) − Ŷc(n)
)2]

= RY Y (0) −
M∑

m=0

h(m)RXY (m).

When M = 1, the mean-square estimation error is

E
[(

Y (n) − Ŷc(n)
)2]

= RY Y (0) −
1∑

m=0

h(m)RXY (m)

=
3

4
−

[11

15
·
3

4
+

1

15
·
1

4

]

=
11

60
.

Comments:

The causal Wiener filters, with M = 0, 1, 2, . . . , 10 are calculated as well. The
curve marked with circles in Fig (1) represents the mean-square estimation
error M . We may observe similar situation that the mean-square estimation
error stabilizes after M ≥ 3. Hence the optimal estimator that can be achieved
is the Wiener filter with length of 4, i.e. M = 3.

By the way it can be also observed that the non-causal estimators performed
better than the causal ones, in the sense that the mean-square estimation
errors caused by the non-causal filters are always smaller than (when M ≥ 1)
or equal (when M = 0) to that of causal filters, i.e.,

E
[(

Y (n) − Ŷ (n)
)2]

≤ E
[(

Y (n) − Ŷc(n)
)2]

.
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