Stochastic Processes II (FP-7.5) Solution Set 8

Problem 8.1 (Example 7.17 in Shanmugan)

Solution:

In Example 7.17, it is assumed that $S_{1}(t)$ represents the position of a particle, and $S_{2}(t)$ represents its velocity. Then we can write

$$
S_{1}(t)=\int_{0}^{t} S_{2}(\tau) d \tau+S_{1}(0)
$$

or with a sampling time of one second, this can be converted into the approximate difference equation

$$
\begin{equation*}
S_{1}(n)=S_{2}(n-1)+S_{1}(n-1) . \tag{1}
\end{equation*}
$$

We assume that the sequence

$$
\begin{equation*}
W(n)=S_{2}(n)-S_{2}(n-1) \tag{2}
\end{equation*}
$$

of differences between consecutive velocity samples is a zero-mean white noise sequence with unity variance, i.e.

$$
\begin{aligned}
E[W(n)] & =0, \\
E[W(n) W(n+k)] & =\delta(k) .
\end{aligned}
$$

Equations (1) and (2) can be combined in the matrix notation (system model)

$$
\boldsymbol{Y}(n)=\boldsymbol{H}(n) \boldsymbol{Y}(n-1)+\boldsymbol{Z}(n), \quad n=1,2,3, \ldots
$$

where

- $\boldsymbol{Y}(n) \doteq\left[\begin{array}{ll}S_{1}(n) & S_{2}(n)\end{array}\right]^{T} ;$
- $\boldsymbol{H}(n) \doteq\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right] ;$
$-\boldsymbol{Z}(n) \doteq\left[\begin{array}{c}0 \\ W(n)\end{array}\right]$.
From the above assumption on $W(n)$, the covariance matrix of $\boldsymbol{Z}(n)$ reads

$$
\begin{aligned}
\boldsymbol{Q}_{Z}(n) & =E\left[\boldsymbol{Z}(n) \boldsymbol{Z}(n)^{T}\right] \\
& =\left[\begin{array}{lr}
0 & 0 \\
0 & 1
\end{array}\right] .
\end{aligned}
$$

The channel model can be written as

$$
X(n)=\boldsymbol{A}(n) \boldsymbol{Y}(n)+N(n)
$$

where

- $X(n)$ is a scalar, representing the observed position of the particle;
- $\boldsymbol{A}(n)=\left[\begin{array}{ll}1 & 0\end{array}\right] ;$
- $N(n)$ is a zero-mean white noise sequence with unit variance: $E[N(n)]=0$ and $E[N(n) N(n+k)]=\delta(k)$, i.e. $Q_{N}(n)=1$.

Assuming the initial state $\boldsymbol{Y}(0 \mid 0)=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ and $\boldsymbol{R}(0 \mid 0)=\sigma^{2} \boldsymbol{I}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, we solve:

- Prediction $(n=1)$

$$
\begin{aligned}
\hat{\boldsymbol{Y}}(1 \mid 0) & =\boldsymbol{H}(1) \boldsymbol{Y}(0 \mid 0) \\
& =\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
\hat{X}(1 \mid 0) & =\boldsymbol{A}(1) \hat{\boldsymbol{Y}}(1 \mid 0) \\
& =\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& =0 \\
\boldsymbol{R}(1 \mid 0) & =\boldsymbol{H}(1) \boldsymbol{R}(0 \mid 0) \boldsymbol{H}(1)^{T}+\boldsymbol{Q}_{Z}(1) \\
& =\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]
\end{aligned}
$$

- Update $(n=1)$

$$
\begin{aligned}
& \boldsymbol{B}(1)=\boldsymbol{R}(1 \mid 0) \boldsymbol{A}(1)^{T}\left[\boldsymbol{A}(1) \boldsymbol{R}(1 \mid 0) \boldsymbol{A}(1)^{T}+Q_{N}(1)\right]^{-1} \\
& \left.=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right] \cdot\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]+1\right]^{-1} \\
& =\left[\begin{array}{l}
\frac{2}{3} \\
\frac{1}{3}
\end{array}\right] \\
& \hat{\boldsymbol{Y}}(1 \mid 1)=\hat{\boldsymbol{Y}}(1 \mid 0)+\boldsymbol{B}(1) \cdot[X(1)-\hat{X}(1 \mid 0)] \\
& =\left[\begin{array}{c}
0 \\
0
\end{array}\right]+\left[\begin{array}{c}
\frac{2}{3} \\
\frac{1}{3}
\end{array}\right] \cdot[X(1)-0] \\
& =\left[\begin{array}{c}
\frac{2}{3} \\
\frac{1}{3}
\end{array}\right] X(1) \\
& \boldsymbol{R}(1 \mid 1)=[\boldsymbol{I}-\boldsymbol{B}(1) \boldsymbol{A}(1)] \boldsymbol{R}(1 \mid 0) \\
& =\left[\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]-\left[\begin{array}{l}
\frac{2}{3} \\
\frac{1}{3}
\end{array}\right]\left[\begin{array}{ll}
1 & 0
\end{array}\right]\right] \cdot\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right] \\
& =\left[\begin{array}{ll}
\frac{2}{3} & \frac{1}{3} \\
\frac{1}{3} & \frac{5}{3}
\end{array}\right]
\end{aligned}
$$

- Prediction $(n=2)$

$$
\begin{aligned}
\hat{\boldsymbol{Y}}(2 \mid 1) & =\boldsymbol{H}(2) \hat{\boldsymbol{Y}}(1 \mid 1) \\
& =\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
\frac{2}{3} \\
\frac{1}{3}
\end{array}\right] X(1) \\
& =\left[\begin{array}{l}
1 \\
\frac{1}{3}
\end{array}\right] X(1) \\
\hat{X}(2 \mid 1) & =\boldsymbol{A}(2) \hat{\boldsymbol{Y}}(2 \mid 1) \\
& =\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
\frac{1}{3}
\end{array}\right] X(1) \\
& =X(1) \\
\boldsymbol{R}(2 \mid 1) & =\boldsymbol{H}(2) \boldsymbol{R}(1 \mid 1) \boldsymbol{H}(2)^{T}+\boldsymbol{Q}_{Z}(2) \\
& =\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
\frac{2}{3} & \frac{1}{3} \\
\frac{1}{3} & \frac{5}{3}
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ll}
3 & 2 \\
2 & \frac{8}{3}
\end{array}\right]
\end{aligned}
$$

- Update $(n=2)$

$$
\begin{aligned}
\boldsymbol{B}(2) & =\boldsymbol{R}(2 \mid 1) \boldsymbol{A}(2)^{T}\left[\boldsymbol{A}(2) \boldsymbol{R}(2 \mid 1) \boldsymbol{A}(2)^{T}+Q_{N}(2)\right]^{-1} \\
& \left.=\left[\begin{array}{ll}
3 & 2 \\
2 & \frac{8}{3}
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right] \cdot\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{ll}
3 & 2 \\
2 & \frac{8}{3}
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]+1\right]^{-1} \\
& =\left[\begin{array}{l}
\frac{3}{4} \\
\frac{1}{2}
\end{array}\right] \\
\hat{\boldsymbol{Y}}(2 \mid 2) & =\hat{\boldsymbol{Y}}(2 \mid 1)+\boldsymbol{B}(2) \cdot[X(2)-\hat{X}(2 \mid 1)] \\
& =\left[\begin{array}{c}
X(1) \\
\frac{1}{3} X(1)
\end{array}\right]+\left[\begin{array}{l}
\frac{3}{4} \\
\frac{1}{2}
\end{array}\right] \cdot[X(2)-X(1)] \\
& =\left[\begin{array}{l}
\frac{3}{4} X(2)+\frac{1}{4} X(1) \\
\frac{1}{2} X(2)-\frac{1}{6} X(1)
\end{array}\right] \\
\boldsymbol{R}(2 \mid 2) & =\left[\begin{array}{ll}
\boldsymbol{I}-\boldsymbol{B}(2) \boldsymbol{A}(2)] \boldsymbol{R}(2 \mid 1) \\
& \left.=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]-\left[\begin{array}{ll}
\frac{3}{4} \\
\frac{1}{2}
\end{array}\right]\left[\begin{array}{ll}
1 & 0
\end{array}\right]\right] \cdot\left[\begin{array}{ll}
3 & 2 \\
2 & \frac{8}{3}
\end{array}\right] \\
& =\left[\begin{array}{ll}
\frac{3}{4} & \frac{1}{2} \\
\frac{1}{2} & \frac{5}{3}
\end{array}\right]
\end{array}\right. \text {. }
\end{aligned}
$$

Problem 8.2

Solution:

Implement the prediction and update equations from the lecture notes. This is done in the file kalman.m.

