Input-output relationship:

$$
Y(n)=X(n)-X(n-1)
$$

Impulse response:

$$
h(n)=\delta(n)-\delta(n-1)
$$

11/09/2005 Solution to MM1 Exercise $\quad 1$

$$
h(n)=\delta(n)-\delta(n-1)
$$

Autocorrelation function:

$$
R_{h h}(k)=-\delta(k-1)+2 \delta(k)-\delta(k+1)
$$

$$
Y(n)=X(n)-X(n-1)
$$

Transfer function:

$$
\begin{aligned}
Y(f) & =X(f)-\exp (-j 2 \pi f) X(f) \\
& =[1-\exp (-j 2 \pi f)] X(f) \\
H(f) & =Y(f) / X(f) \\
& =[1-\exp (-j 2 \pi f)] \\
& =\exp (-j \pi f)[\exp (j \pi f)-\exp (-j \pi f)] \\
H(f) & =2 j \exp (-j \pi f) \sin (\pi f)
\end{aligned}
$$

Variance of $Y(n)$:

$$
\begin{aligned}
E\left[Y^{2}(n)\right] & =R_{Y Y}(0) \\
& =\left.\left(R_{h h}(k) * R_{X X}(k)\right)\right|_{k=0} \\
& =\left.\left(R_{h h}(k) * \delta(k)\right)\right|_{k=0} \\
& =\left.R_{h h}(k)\right|_{k=0} \\
& =\sum_{m=-\infty}^{+\infty} h^{2}(m) \\
& =1+1 \\
E\left[Y^{2}(n)\right] & =2
\end{aligned}
$$

Another method to compute the variance:

$$
E\left[Y(n)^{2}\right]=R_{Y Y}(0)=\int S_{Y Y}(f) d f=2
$$

