Stochastic Processes II (FP-7.5)
 Problem Set 4

Problem 4.1 (Problem 6.13 in Shanmugan)

The conditional pdfs corresponding to two hypothesis are given:

$$
\begin{array}{ll}
f_{Y \mid H_{0}}\left(y \mid H_{0}\right)=\frac{1}{2} \exp \left(-\frac{y}{2}\right), & 0<y \\
f_{Y \mid H_{1}}\left(y \mid H_{1}\right)=\frac{1}{4} \exp \left(-\frac{y}{4}\right), & 0<y
\end{array}
$$

Suppose we want to test these hypothesis based on two independent samples Y_{1} and Y_{2}. Assume equally likely priors.
a. Derive the MAP decision rule for the test.
b. Calculate $P_{M}=P\left(D_{0} \mid H_{1}\right)$ and $P_{F}=P\left(D_{1} \mid H_{0}\right)$.

Problem 4.2 (Problem 6.14 in Shanmugan)

The signaling waveforms used in a binary communication system are

$$
\begin{aligned}
& s_{1}(t)= \begin{cases}4 \sin \left(2 \pi f_{0} t\right) & , \\
0 & 0 \leq t \leq T \\
s_{0}(t) & =-s_{1}(t)\end{cases} \\
& s_{0},
\end{aligned}
$$

$$
P\left[x(t)=s_{1}(t)\right]=P\left[x(t)=s_{0}(t)\right]=\frac{1}{2}
$$

where $T=1 \mathrm{~ms}$ is the signal duration and $f_{0}=10 / T$.
Assume that the signal is corrupted by zero-mean additive white Gaussian noise with power spectral density

$$
S_{W W}(f)=10^{-3} \mathrm{~W} / \mathrm{Hz}
$$

a. Find the decision rule that minimizes the average probability of error P_{e}.
b. Find the value of P_{e}.

