## **Stochastic Analysis for Engineers**



Lectured by Zhenyu Yang Fall 2004, Aalborg University Esbjerg

Course Web:<u>http://www.cs.aue.auc.dk/~yang/course/stoc04.htm</u>

## Objective

- To give students an **understanding** of the description of stochastic signals in order to perform filtering and detection
- To enable students to **apply** estimation and detection methods for simple problems in connection with stationary stochastic processes
- To give students an **understanding** of spectral estimation techniques

### Textbook

 K. Sam Shanmugan and BArthur M. reipohl: "Random Signals - Detection, Estimation and Data Analysis", John Wiley Sons, Inc., 1988.

## Content

- Discrete linear models
  - Autoregressive (AR) processes
  - Moving average (MA) models
  - Autoregressive moving average (ARMA) models
- Signal detection
  - Hypothesis testing
  - Decision theory and decision rules
  - Binary detection
  - M-ary detection
- Linear minimum mean-square error estimation
  - Linear minimum mean-square error estimators
  - Nonlinear minimum mean-square error estimators
  - Joint Gaussian random variables

8-Sep-04

## **Content** (cont'd)

- Discrete time Wiener filters
  - Non-causal discrete time Wiener filters
  - Causal discrete time Wiener filters
- Discrete time Kalman filters
  - Kalman filters
  - Extended Kalman filters
- Parameter estimation of stochastic processes
  - Model-free estimation: mean value, autocorrelation, PSD
  - Model-based estimation for AR, MA, ARMA processes
- Case studies

## **Ten Lecture Topics**

| Topics                                         | Sections in<br>Shanmugan |
|------------------------------------------------|--------------------------|
| Response of linear systems to random<br>inputs | 4.1, 4.2, 4.3            |
| Discrete linear stochastic models              | 5.2                      |
| Detection of known signals (Part 1)            | 6.2, 6.3, 6.5            |
| Detection of known signals (Part 2)            | 6.2, 6.3, 6.5            |
| Mean-square error filtering and estimation,    | 7.2, 7.3                 |
| Wiener filters (Part 1)                        | 7.5                      |
| Wiener filters (Part 2)                        | 7.5, 7.7                 |
| Kalman filters (Part 1)                        | 7.6                      |
| Kalman filters (Part 2)                        | 7.6                      |
| Model-free and spectral estimation (Part 1)    | 9.3, 9.4                 |
| Model-free and spectral estimation (Part 2)    | 9.3, 9.4                 |

## What have we learned in Sem6?

- MM1: Definition and description of stochastic processes
- MM2: Special classes of stochastic processes and stationarity
- MM3: Autocorrelation and power spectral density functions of WSS processes
- MM4: Continuity, differentiation, integration, time averaging and ergodicity
- MM5: Response of Linear Systems to Random Signals

8-Sep-04

### **Random Processes**

- Let **S** be the sample space of a random experiment and let **t** be a variable that can have values in the set  $\Gamma \subset \mathbf{R}_1$ , the real line. A **real-valued random process X(t), t**  $\in \Gamma$ , is a measurable function on  $\Gamma \times \mathbf{S}$  that maps  $\Gamma \times \mathbf{S}$  onto  $\mathbf{R}_1$
- A real-valued random process can be described by its nth order distribution function like

 $F_{X(t_1),X(t_2),...X(t_n)}(x_1,x_2,...x_n) = P[X(t_1) \le x_1,...,X(t_n) \le x_n]$ 

for all **n** and  $\mathbf{t}_1, \dots, \mathbf{t}_n \in \Gamma$ 

## **Method of Description**

- First and second order characteristics
   The mean of X(t) μ<sub>X</sub>(t) = E{X(t)}
  - The autocorrelation of **X(t)**

 $R_{XX}(t_1, t_2) = E\{X^*(t_1)X(t_2)\}\$ 

The autocovariance of **X(t)** 

$$C_{XX}(t_1, t_2) = R_{XX}(t_1, t_2) - \mu_X^*(t_1)\mu_X(t_2)\}$$
  
The correlation coefficient of **X(t)**

$$r_{XX}(t_1, t_2) = \frac{C_{XX}(t_1, t_2)}{\sqrt{C_{XX}(t_1, t_1)C_{XX}(t_2, t_2)}}$$

### **Matlab** Calculations

- randn(m,n) function generates arrays of random numbers whose elements are normally distributed with mean 0, and variance 1
- M = mean(A) returns the mean values of the elements along different dimensions of an array.
- C = cov(x) where x is a vector returns the variance of the vector elements.
- C=xcorr(X,Y) estimates the cross-correlation sequence of a random process. Autocorrelation is handled as a special case.
- C=corrcoef(X) returns a matrix of correlation coefficients calculated from an input matrix whose rows are observations and whose columns are variables.

### **Strict-Sense Stationarity (SSS)**

A random process **X(t)** is called **time stationary** or **stationary in the strict sense (SSS)** if all of the distribution functions describing the process are invariant under a time translation, i.e.,

for all  $t_1, t_2, \dots, t_k, t_1 + \tau, t_2 + \tau, \dots, t_k + \tau \in \Gamma$ , and all  $k=1,2,\dots,$ 

 $P[X(t_1) \le x_1, X(t_2) \le x_2, ..., X(t_k) \le x_k] \\= P[X(t_1 + \tau) \le x_1, X(t_2 + \tau) \le x_2, ..., X(t_k + \tau) \le x_k]$ 

### Wide-Sense Stationarity (WSS)

A random process **X(t)** is said to be **stationary in the wide sense (WSS)** if its mean is a constant and the correlation function depends only on the time difference, i.e.,

 $E{X(t)}=\mu_X=constant,$ 

 $\mathbf{E}\{\mathbf{X}^{*}(t)\mathbf{X}(t + \tau)\} = \mathbf{R}_{\mathbf{X}\mathbf{X}}(\tau)$ 

## Autocorrelation Properties $R_{XX}(\tau)=E\{X(t)X(t+\tau)\}$

- $R_{XX}(0) = E\{X^2(t)\} \ge 0$  average power
- **R**<sub>XX</sub>( $\tau$ ) is an even function of  $\tau$ , i.e., **R**<sub>XX</sub>( $\tau$ )= **R**<sub>XX</sub>(- $\tau$ )
- **R**<sub>XX</sub>( $\tau$ ) is bounded by **R**<sub>XX</sub>(**0**), i.e.,  $|\mathbf{R}_{XX}(\tau)| \le \mathbf{R}_{XX}(\mathbf{0})$
- If X(t) contains a periodic component, then  $R_{XX}(\tau)$  will also contain a periodic component
- If  $\lim_{\tau \to \infty} \mathbf{R}_{XX}(\tau) = \mathbf{C}$ , then  $\mathbf{C} = \mu_X^2$
- If  $R_{XX}(T_0) = R_{XX}(0)$  for some nonzero  $T_0$ , then  $R_{XX}(\tau)$  is periodic with a period  $T_0$
- If  $R_{XX}(0) < \infty$ , and  $R_{XX}(\tau)$  is continuous at  $\tau=0$ , then it is continuous for every  $\tau$

8-Sep-04

### **Frequency Analysis of Random Signals**

# How about the spectral properties of the random processes?

- Direct Fourier transform can not be applied to random signals
- The autocorrelation function  $R_{XX}(\tau)$  contains some information about the frequency of the random signals

### Consider real WSS random processes...

### **Power Spectral Density Function**

For the random WSS random process X(t), the
 PSD function is defined as

$$S_{XX}(f) = F\{R_{XX}(\tau)\} = \int_{-\infty}^{\infty} R_{XX}(\tau) \exp(-j2\pi f\tau) dt$$

Given the PSD function, the autocorrelation function can be obtained through the inverse Fourier transform

$$R_{XX}(\tau) = F^{-1}\{S_{XX}(f)\} = \int_{-\infty}^{\infty} S_{XX}(f) \exp(j2\pi f\tau) df$$

### **Properties of the PSD Function**

### The PSD function called the **spectrum of Random process X(t)**, has the properties

- S<sub>XX</sub>(f) is real and nonnegative
- the average power in X(t) is

$$E\{X^{2}(t)\} = R_{XX}(0) = \int_{-\infty}^{\infty} S_{XX}(f) df$$

- If **X(t)** is real, then **S<sub>XX</sub>(f)** is even
- If X(t) has periodic components, then S<sub>XX</sub>(f) will have impulses

### **Properties of the PSD Function (cont'd)**

- Band-related processes
  - Lowpass processes... its psd is zero for |f|>B, Bbandwidth
  - Bandpass processes... its psd is zero for  $f_c-B/2 < |f| < f_c+B/2$ , B-bandwidth,  $f_c$  center frequency

### Power and bandwidth calculations

The power within an interval

$$P_X(f_1, f_2) = 2 \int_{f_1}^{f_2} S_{XX}(f) df$$

Effective bandwidth  $\mathbf{B}_{eff}$ , coefficient time  $\tau_{c}$ 

$$B_{eff} = \frac{1}{2} \frac{\int_{-\infty}^{\infty} S_{XX} (f) df}{\max[S_{XX} (f)]} \qquad \tau_{c} = \frac{\int_{-\infty}^{\infty} R_{XX} (\tau) d\tau}{R_{XX} (0)}$$

8-Sep-04

## **Ergodicity**

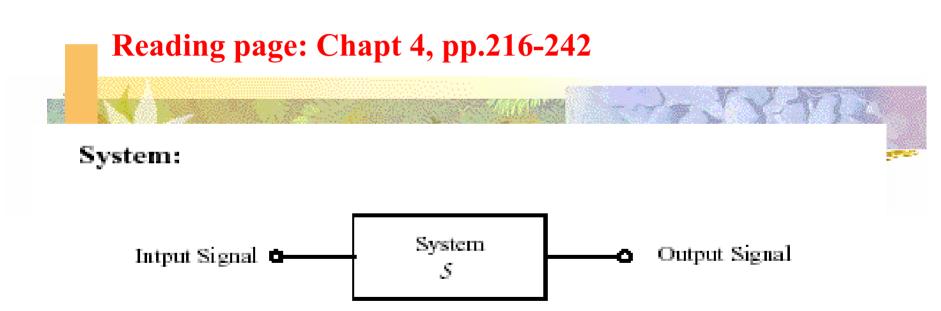
### Motivation

- Estimation of the ensemble averages from the time averages ...
- Over a single member function of finite duration...
- Definition
  - A stationary random process is **ergodic** if its ensemble averages equal (in a mean-square sense) appropriate time averages
  - Ergodicity is related to specific ensemble averages

### Benefit

Ergodicity means that any ensemble average of X(t) can be determined from a single member function of X(t) with probability one

### MM1. Response of LTI Systems to Random Inputs

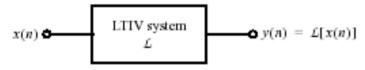


We look at a system as a black box which generates an output signal depending on the input signal and possibly some initial conditions.

### LTI systems

#### 1.1. Discrete-time linear time-invariant (LTIV) systems

1.1.1. Discrete-time LTTV system



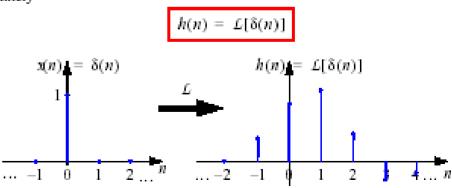
1.1.2. Steady-state description of a LTIV system

• Impulse response:

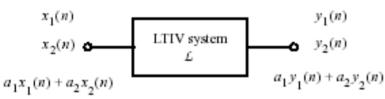
The impulse response (IR) h(n) of L is the response of L to the unit pulse

$$\delta(n) = \begin{cases} 1 \ ; & n = 0 \\ 0 \ ; & n \neq 0 \end{cases},$$

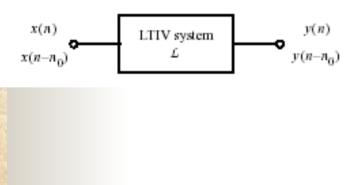
namely





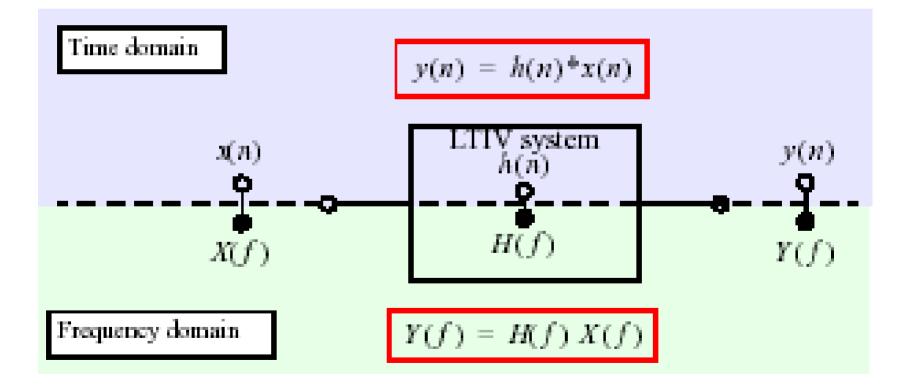


Time-invariant:



## LTI systems (Cont'd)

### Summary: I-O relationship of a LTIV system:



### **Response of LTI Systems to Random Inputs**

• LTI system:  $\mathbf{y}[\mathbf{n}] = \sum_{\mathbf{k} = -\infty} \mathbf{x}[\mathbf{k}] \mathbf{h}[\mathbf{n} - \mathbf{k}]$ 

Random inputs

- Two ways for the response computation
  - Compute the response of the LTI system to each member sequence of the random input and then obtain the properties of the ensemble of the output sequences,
  - Computer the properties of the output directly

### **Response of Discrete-Time Systems**

- A causal LTI system with the IR h[n]/H(f)
- The output (random sequence) Y[n] corresponds the random input sequence X[n] is  $Y[n]=X[n]*h[n]=\Sigma_{k=-\infty}^{\infty}h[k]X[n-k]$
- The mean sequence of the output **Y**[**n**] is  $\mu_{\mathbf{Y}}[\mathbf{n}] = \mathbf{E}\{\mathbf{Y}[\mathbf{n}]\} = \sum_{\underline{\mathbf{k}}=-\infty}^{\infty} \mathbf{h}[\mathbf{k}] \mathbf{E}\{\mathbf{X}[\mathbf{n}-\mathbf{k}]\}$
- The autocorrelation sequence of the output **Y**[**n**] is  $\mathbf{R}_{YY}[\mathbf{n}_1,\mathbf{n}_2] = \sum_{\underline{k1}=-\infty}^{\infty} \sum_{\underline{k2}=-\infty}^{\infty} \mathbf{h}[\mathbf{k}_1]\mathbf{h}[\mathbf{k}_2] \mathbf{R}_{XX}[\mathbf{n}_1-\mathbf{k}_1,\mathbf{n}_2-\mathbf{k}_2]$

### **Response of Discrete-Time Systems (Cont'd)**

- If X[n] is WSS, then the output will also be WSS, i.e.,  $\mu_{Y} = E\{Y[n]\} = \sum_{\underline{k}=-\infty}^{\infty} h[k]E\{X[n-k]\} = \mu_{X}H(0)$
- The autocorrelation of **Y**[n]:  $\mathbf{R}_{YY}[\mathbf{n}_{1},\mathbf{n}_{2}] = \sum_{\underline{k1}=-\infty}^{\infty} \sum_{\underline{k2}=-\infty}^{\infty} \mathbf{h}[\mathbf{k}_{1}]\mathbf{h}[\mathbf{k}_{2}]\mathbf{R}_{XX}[(\mathbf{n}_{2}-\mathbf{n}_{1})-(\mathbf{k}_{2}-\mathbf{k}_{1})]$

 $\mathbf{R}_{YY}[\mathbf{n}] = \mathbf{R}_{XX}[\mathbf{n}] * \mathbf{h}[-\mathbf{n}] * \mathbf{h}[\mathbf{n}] = \mathbf{R}_{hh}[\mathbf{n}] * \mathbf{R}_{XX}[\mathbf{n}]$ 

The psd of **Y**[n] is  $S_{YY}(f) = S_{XX}(f)H(-f)H(f) = S_{XX}(f)|H(f)|^2$ 

### **Response of Discrete-Time Systems (Cont'd)**

The cross-correlation between **X**[**n**] and **Y**[**n**] is

 $\mathbf{R}_{YX}[\mathbf{n}] = \sum_{\underline{k}=-\infty}^{\infty} \mathbf{h}[-\mathbf{k}] \mathbf{R}_{XX}[\mathbf{n}-\mathbf{k}] = \mathbf{h}[-\mathbf{n}] * \mathbf{R}_{XX}[\mathbf{n}]$ 

 $\mathbf{R}_{XY}[\mathbf{n}] = \sum_{\underline{k}=-\infty}^{\infty} \mathbf{h}[\mathbf{k}] \mathbf{R}_{XX}[\mathbf{n}-\mathbf{k}] = \mathbf{h}[\mathbf{n}] * \mathbf{R}_{XX}[\mathbf{n}]$ 

 $S_{XY}(f) = H(f)S_{XX}(f)$ 

!!!The basis of frequency domain techniques!!!
for the design of LTI systems

### **Special Case: White noise**

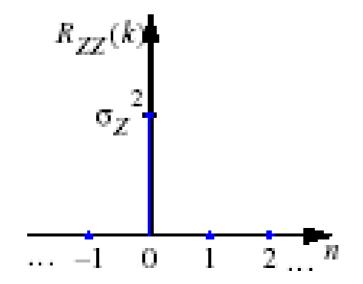
### White process:

Z(n) is a white process if it satisfies the following conditions:

- Z(n) is a random process

$$-\mu_Z(n) = \mathbf{E}[Z(n)] = 0$$

 $-R_{ZZ}(n, n+k) = \mathbf{E}[Z(n)Z(n+k)] = R_{ZZ}(k) = \sigma_Z^{-2}\delta(k)$ 



### **Special Case: White noise (Cont'd)**

Spectrum of a white process:
 If Z(n) is a white process:

$$S_{ZZ}(f) = \sigma_Z^2$$

$$S_{ZZ}(f) = \sigma_Z^2$$

$$\sigma_Z^2$$

$$-0.5 \qquad 0 \qquad 0.5 \quad f$$

### **Estimation of System Parameters**

• If the input **X**[**n**] is a white noise, i.e.,  $\mu_{Y} = 0; R_{XX}[n] = \sigma^{2} \delta(n), \text{ or } S_{XX}(f) = \sigma^{2},$ 

```
According to

\mathbf{R}_{XY}[\mathbf{n}] = \sum_{\underline{k}=-\infty} \mathbf{h}[\mathbf{k}]\mathbf{R}_{XX}[\mathbf{n}-\mathbf{k}] = \mathbf{h}[\mathbf{n}] \mathbf{R}_{XX}[\mathbf{n}]

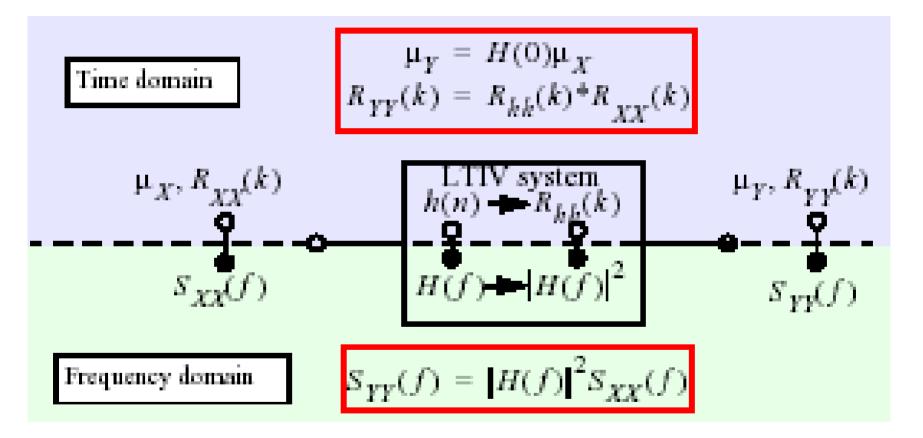
There is
```

 $\mathbf{R}_{XY}[\mathbf{n}] = \sigma^2 \mathbf{h}[\mathbf{n}], \text{ or } \mathbf{S}_{XY}(\mathbf{f}) = \sigma^2 \mathbf{H}(\mathbf{f})$ 

 It serves as the basis for estimating the impulse/ frequency response of LTI systems if the output in response to a white-noise input can be observable

8-Sep-04

Summary: Second-order I-O relationship of a LTIV system:

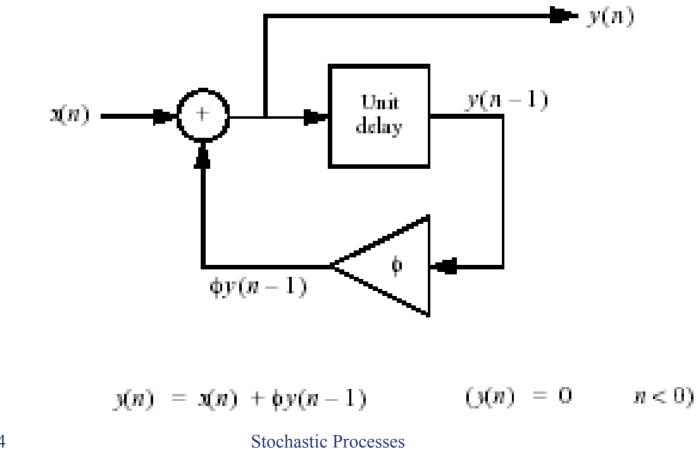




### Example

### 1.1.5. Example: First order recursive filter

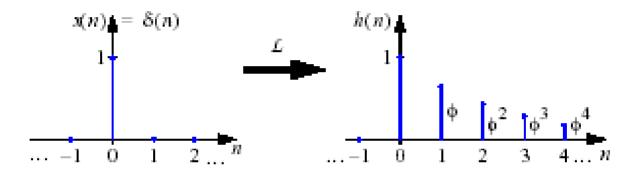
Block diagram and recursive equation:



8-Sep-04

### **Example (Cont'd)**

Impulse response:



$$h(n) = \begin{cases} 0 ; n < 0 \\ \phi^n ; n \ge 0 \end{cases}$$

Stability condition:

$$\sum_{n = -\infty}^{\infty} |h(n)| = \sum_{n = 0}^{\infty} |\phi|^n = \lim_{N \to \infty} \frac{1 - |\phi|^N}{1 - |\phi|} < \infty \qquad \Longleftrightarrow \qquad |\phi| < 1$$
$$\left[\sum_{n = 0}^{N} a^n = \frac{1 - a^{N+1}}{1 - a}\right]$$

31

8-5

### **Example (Cont'd)**

• Transfer function:

$$H(f) = \mathcal{F}\{h(n)\} = \sum_{n=0}^{\infty} \phi^n \exp(-j2\pi nf)$$
$$= \sum_{n=0}^{\infty} [\phi \exp(-j2\pi f)]^n$$
$$= \frac{1}{1 - \phi \exp(-j2\pi f)}$$
$$[H(f)]$$
$$= \frac{1}{1 - \phi}$$

32

## **Example (Cont'd)**

- Second-order I-O relationship:
  - Time domain:

$$\mu_Y = H(0)\mu_X$$
$$= \frac{1}{1-\phi}\mu_X$$

$$R_{YY}(k) = R_{kk}(k) * R_{\chi\chi}(k)$$
$$= \frac{\phi^{|k|}}{1 - \phi^2} * R_{\chi\chi}(k)$$

$$\left[R_{hh}(k) = \sum_{m=0}^{\infty} \phi^m \phi^{m+|k|} = \phi^{|k|} \sum_{m=0}^{\infty} \phi^{2m} = \phi^{|k|} \frac{1}{1-\phi^2}\right]$$

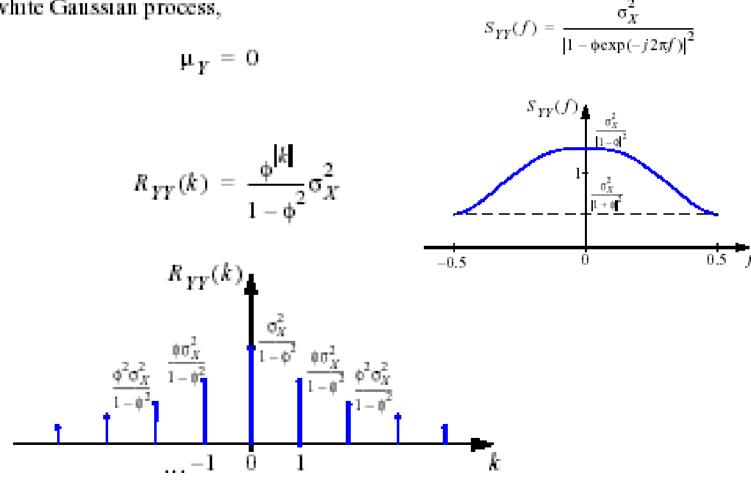
- Frequency domain:

$$S_{\gamma\gamma}(f) = |H(f)|^2 S_{\chi\chi}(f)$$
$$= \frac{1}{\left[1 - \phi \exp(-j2\pi f)\right]^2} S_{\chi\chi}(f)$$

8-Set

# • Special case: AR(1) process (see Section 2.2):

If X(n) is a white Gaussian process,



### **Response of Continuous-Time Systems**

Deterministic case

• Output of a causal LTI system is

$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau = \int_{-\infty}^{\infty} h(\tau)x(t-\tau)d\tau$$

- Frequency expression Y(f) = X(f)H(f)
- The output (**random process**) **Y(t**) of a causal LTI system in response to a random input process **X(t)** is

$$Y(t) = \int_{-\infty}^{\infty} X(\tau) h(t-\tau) d\tau = \int_{-\infty}^{\infty} h(\tau) X(t-\tau) d\tau$$

### **Response of Continuous-Time Systems (Cont'd)**

The mean function of the output **Y(t)** is

$$\mu_Y(t) = E\{Y(t)\} = \int_{-\infty}^{\infty} \mu_X(\tau) h(t-\tau) d\tau = \int_{-\infty}^{\infty} h(\tau) \mu_X(t-\tau) d\tau$$

The autocorrelation function of the output **Y(t)** is

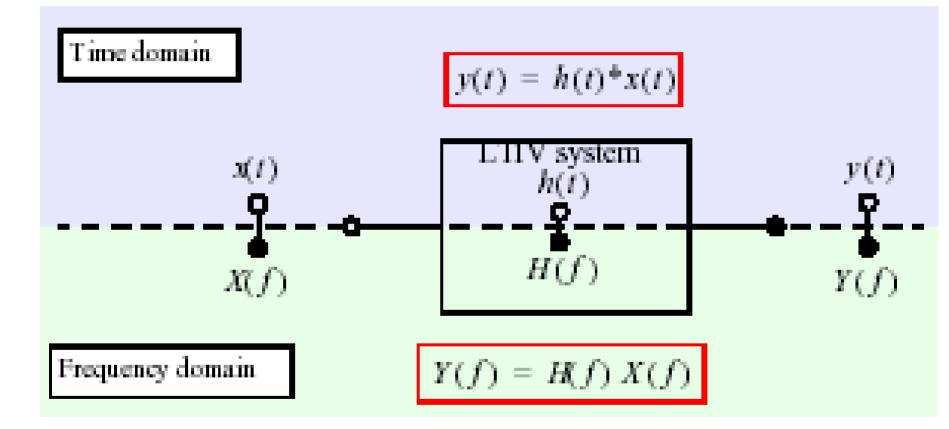
$$R_{YY}(t_1, t_2) = E\{Y(t_1)Y(t_2)\} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(\tau_1)h(\tau_2)R_{XX}(t_1 - \tau_1, t_2 - \tau_2)d\tau_1 d\tau_2$$

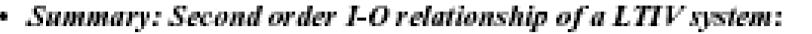
### **Response of Continuous-Time Systems (Cont'd)**

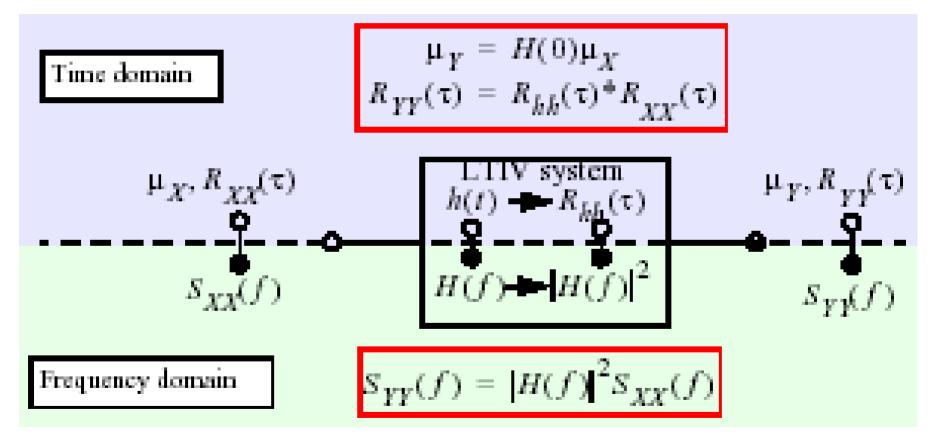
- The cross-correlation between X(t) and Y(t) is  $R_{YX}(\tau) = h(-\tau)^* R_{XX}(\tau)$ , and  $R_{XY}(\tau) = h(\tau)^* R_{XX}(\tau)$
- The autocorrelation of  $\mathbf{Y}(\mathbf{t})$  is  $\mathbf{R}_{YY}(\tau) = \mathbf{R}_{YX}(\tau) * \mathbf{h}(\tau) = \mathbf{R}_{XX}(\tau) * \mathbf{h}(-\tau) * \mathbf{h}(\tau)$
- The psd function of Y[n] is  $S_{YY}(f) = S_{XX}(f)H(-f)H(f) = S_{XX}(f)|H(f)|^2$

### **|H(f)|<sup>2</sup>** is referred to as the power transfer function

Summary: I-O relation ship of a LTIV system:







### Example

### 1.2.5. Example: Ideal integrator

Block diagram and input-output relationship:

