MM7. Kalman Filter (Part one) Reading page: Chapt 7, pp.406-419

-Explain MM6 exercise
-7.1 Introduction
-7.2 An Intuitive Description of Kalman filter
-7.3 Formal Description of Scale Kalman Filter

What have we talked through MM6 - Discrete-Time Wiener Filters?

6.1 (Ideal) Noncausal Wiener Filters
6.2 Causal Wiener Filters

Discrete-Time Wiener Filters

Motivation:

- Estimate a WSS random sequence $\mathrm{Y}(\mathrm{n})$ based on the observation of another sequence $\mathrm{X}(\mathrm{n})$.
- Without loss of generality we assume that

$$
\mathbf{E}\{\mathbf{Y}(\mathbf{n})\}=\mathbf{E}\{\mathbf{X}(\mathbf{n})\}=\mathbf{0}
$$

- The goodness of the estimator is described by MSE

$$
E\left\{(Y(n)-\hat{Y}(n))^{2}\right\}
$$

6.1 Ideal (Noncausal) Wiener Filters

- Problem Formulation:

Seek a linear filter \leftarrow system
LMMSEE: $\quad \hat{Y}=h_{0}+\sum_{m=1}^{M} h_{m} X(m)$

$$
\hat{Y}(n)=\sum_{m=-\infty}^{\infty} h(m) X(n-m)=h(n) * X(n)
$$

Which minimizes the MSE

$$
E\left\{(\hat{Y}(n)-Y(n))^{2}\right\}
$$

The filter reaching above requirement is called ideal (noncausal) Wiener filter

6.1.3 Wiener Filter via LMMSEE

- Wiener filter:

$$
\begin{aligned}
& R_{X Y}(k)=\sum_{m=-\infty}^{\infty} h(m) R_{X X}(k-m)=h(k) * R_{X X}(k) \\
& \quad H(f)=\frac{S_{X Y}(f)}{S_{X X}(f)}
\end{aligned}
$$

- MSE residual:
$E\left\{(Y(n)-\hat{Y}(n))^{2}\right\}=\sigma_{Y}{ }^{2}-\sum_{m=-\infty}^{\infty} h(m) R_{X Y}(m)$
$\left.E\left\{(Y(n)-\hat{Y}(n))^{2}\right\}=\int_{-\frac{1}{2}}^{\frac{1}{2}}\left[S_{Y Y}(f)\right]-\frac{\left|S_{X Y}(f)\right| 2}{S_{X X}(f)}\right] d f$
- LMMSEE:

$$
\begin{aligned}
& \mathbf{h}=\left[\begin{array}{lllllll}
h_{1} & \cdots & h_{M}
\end{array}\right]^{T} \quad \mu_{\mathbf{x}}=\left[\begin{array}{llll}
\mu_{\mathbf{X}(1)} & \cdots & \mu_{\mathbf{X}(M)}
\end{array}\right]^{T} \\
& \sum_{\mathrm{xr}}=\left[\begin{array}{c}
\sum_{X(M)} \\
\vdots \\
\sum_{X(M) y}
\end{array}\right], \quad \sum_{\mathrm{xx}}=\left[\begin{array}{ccc}
\sum_{X(1) X(1)} & \cdots & \sum_{X(1) X(M)} \\
\vdots & \ddots & \vdots \\
\sum_{X(M) X(1)} & \cdots & \sum_{X(M) X(M)}
\end{array}\right], \\
& \mathbf{h}=\left(\sum_{\mathrm{xx}}\right)^{-1} \sum_{\mathrm{x} r} \\
& h_{0}=\mu_{r}-\mathbf{h}^{T} \mu_{\mathbf{x}}=\mu_{\mathrm{r}}-\left(\sum_{\mathbf{x} r}\right)^{r}\left(\sum_{\mathbf{x x}}\right)^{-1} \mu_{\mathbf{x}}
\end{aligned}
$$

- MSE residual:

$$
\begin{aligned}
& E\left\{(Y-\hat{Y})^{2}\right\}=E\left\{Y^{2}\right\}-E\left\{\hat{Y}^{2}\right\}=E\{(Y-\hat{Y}) Y\} \\
& E\left\{(Y-\hat{Y})^{2}\right\}=\sigma_{Y}{ }^{2}-\mathbf{h}^{T} \sum_{\mathrm{x} Y}
\end{aligned}
$$

6.2.7 Finite Wiener Filter

Finite Wiener filter: $\hat{Y}(n)=\sum_{m=0}^{M} h(m) X(n-m)$
Wiener-Hopf Solution:
$\mathbf{h}^{\mathbf{T}}=[h(0) h(1) \cdots h(M)]=\mathbf{R}_{\mathrm{XX}}{ }^{-1} \mathbf{R}_{\mathrm{XY}}$ provided $\mathbf{R}_{\mathbf{x x}}$ is invertible,
where
$\mathbf{R}_{\mathbf{x x}}=\left[\begin{array}{cccc}R_{X X}(0) & R_{X X}(1) & \cdots & R_{X X}(M) \\ R_{X X}(1) & R_{X X}(0) & \cdots & R_{X X}(M-1) \\ \vdots & \vdots & \ddots & \vdots \\ R_{X X}(M) & R_{X X}(M-1) & \cdots & R_{X X}(0)\end{array}\right]$
$\mathbf{R}_{\mathrm{XY}}{ }^{\mathrm{T}}=\left[R_{X Y}(0) R_{X Y}(1) \cdots R_{X Y}(M)\right]$

- LMMSEE:

$$
\begin{aligned}
& \mathbf{h}=\left[\begin{array}{lll}
h_{1} & \cdots & h_{M}
\end{array}\right]^{T} \quad \mu_{\mathbf{x}}=\left[\begin{array}{lll}
\mu_{\mathbf{X}(1)} & \cdots & \mu_{\mathbf{X}(M)}
\end{array}\right]^{T} \\
& \sum_{\mathrm{xr}}=\left[\begin{array}{c}
\sum_{X(M) y} \\
\vdots \\
\sum_{X(M) Y}
\end{array}\right], \quad \sum_{\mathrm{xx}}=\left[\begin{array}{ccc}
\sum_{X(1) X(1)} & \cdots & \sum_{X(1) X(M)} \\
\vdots & \ddots & \vdots \\
\sum_{X(M) X(1)} & \cdots & \sum_{X(M) X(M)}
\end{array}\right], \\
& \mathbf{h}=\left(\sum_{\mathrm{xx}}\right)^{-1} \sum_{\mathrm{x} r} \\
& h_{0}=\mu_{\mathrm{r}}-\mathbf{h}^{T} \mu_{\mathbf{x}}=\mu_{\mathrm{r}}-\left(\sum_{\mathbf{x} \mathbf{r}}\right)^{T}\left(\sum_{\mathbf{x x}}\right)^{-1} \mu_{\mathbf{x}}
\end{aligned}
$$

- MSE residual:

$$
\begin{aligned}
& E\left\{(Y-\hat{Y})^{2}\right\}=E\left\{Y^{2}\right\}-E\left\{\hat{Y}^{2}\right\}=E\{(Y-\hat{Y}) Y\} \\
& E\left\{(Y-\hat{Y})^{2}\right\}=\sigma_{Y}{ }^{2}-\mathbf{h}^{T} \sum_{\mathrm{x} Y}
\end{aligned}
$$

Explain the MM6 Exercise!

MM7. Kalman Filter (Part one) Reading page: Chapt 7, pp.406-419

-Explain MM6 exercise
-7.1 Introduction
-7.2 An Intuitive Description of Kalman filter
-7.3 Formal Description of Scale Kalman Filter

7.1 Introduction

A New Approach to LInear Flitering and Predlctlon Problems ${ }^{1}$

The clarakal Ahving oul pundictive pratike is morawiond avive the batp

 ownary them.

 toviond eissourfopter colatatione.

 and ariwathy naviter resule.

Rudolf Emil Kalman

- Born 1930 in Hungary
- BS and MS from MIT
- PhD 1957 from Columbia
- Filter developed in 1960-61
- Now retired

Introduction

arone clam of thositial und prosial aricatice and ourrol is of a eatrizal ratane.

solk Wianar [1] arwid tau peoblera of No-culad Wanc-lispf ixiogral equains, he (opectid fodiariation) for the molatine of tis
 uit garnirution
 dacour anved the Erateraxecry cas [1]
 whene-lhopt appation (4). These nowit mu
 3 been giva mowely by Dulugter (7), Fox
 ick upplies ves is recetaticerary problera ang mithast in guwend decet, has bem [12] 7azacker (13) by nawn cetes, es (12). fazkter (13) Shandmakze (19) tive (Winas thia) which sescriplither th z a dobetice of a rinden nigri t

 Ne. 50- $\mathrm{KO}-11$

Peneri ruthode for nolviag tha Whone pollen we antjoct to ranter of lixitwiza stach nevealy cartail their practoal unfíraw:
(1) The opaind thar in peathad by ib inpribe reepreas. His

 tepeoblem.

 onesbernhe amodyl in mocepocidiul
notion we ret trappuent
 bravel
This pape inhatasurn new look at tra ot co mamkluge of sollems, niduapping the diffotion juet menticest. The following we the taghighte of cau prope
(5) Opwiwd Eniwite and Ontegesal Princtiont The whan peoblex is sprosaind fice the poist of wian of cores.

 ciar wengee, no atar rataical dats we rasinc. Tru tifianty (6) io elriautad Tha meftod is set krowa in polulity thoory (wea pe. 75-75 and 1415-195 of Doob [15] uad
 nangirauiry
(5) Moder or Monder Procumas. Fotionenge, in pasicilar,

 ucion agrale ("hts roime") Tis io a surdand tide the
 cuinouring applocaces of the Wianer theary (2-7) The

[^0]
7.1.1 What's Kalman Filter?

- One of the most well-known and often-used math. Tools for stochastic estimation from noisy measurements
- Rudolph E. Kalman in 1960 published his famous paper decribing a recursive solution to discrete-time linear filtering problem

Features

- Just some applied mathematics
- A linear system
- Noisy data in \rightarrow hopefully less noisy output
- Delay is the price for filtering

7.1.2 What is it used for?

- Target (missiles etc) tracking
- Navigation
- Feedback control
- Computer vision
- Economics

An example is estimating the position and velocity of a satelite from radar data. There are 3 components of position and 3 of velocity so there are at least 6 variables to estimate. These variables are called state variables. With 6 state variables the resulting Kalman filter is called a 6 dimensional Kalman filter.

7.1.3 Kalman Filter Formulation-I

$$
x_{k}=A x_{k-1}+B u_{k}+w_{k-1}, \quad z_{k}=H x_{k}+v_{k} . \quad p(w) \sim N(0, Q)
$$

Priori estimation

(2) Prafect the error covariance abead

$$
P_{k}^{-}=A P_{k-1} A^{T}+Q
$$

Initial estimates for \vec{x}_{k-1} and P_{k-1}
Measurement Update ("Correct")
(1) Compute the Kalman gain

$$
K_{k}=P_{k}^{-} H^{T}\left(H P_{k}^{-} H^{T}+R\right)^{-1}
$$

(2) Update estimate with measturement z_{k}

$$
\hat{x}_{k}=\hat{x}_{k}^{-}+K_{k}\left(z_{k}-H \hat{x}_{k}^{-}\right)
$$

(3) Update the error covariance

Figure 4.2: A complete picture of the operation of the Kalman filter, combining the high-level diagram of Figure 4.1 with the equations from table 4.1 and table 4.2 .

7.2 An Intuitive Explanation

INTRODUCTORY LESSON The one dimensional Kalman Filter

PDJoseph@compuserve.com

7.2.1 Assumptions

- Suppose we have a random variable $\mathrm{x}(\mathrm{t})$ whose value we want to estimate at certain times $\mathrm{t} 0, \mathrm{t} 1, \mathrm{t} 2, \mathrm{t} 3$, etc. Also, suppose we know that $\mathrm{x}(\mathrm{tk})$ satisfies a linear dynamic equation

$$
x(t \mathrm{k}+1)=\mathrm{Ax}(\mathrm{tk})+\mathrm{w}(\mathrm{k}) \text { (the dynamic equation) }
$$

- F is a known number. In order to work through a numerical example let us assume $\mathrm{A}=0.9$
- Kalman assumed that $\mathrm{w}(\mathrm{k})$ is a random number selected by picking a number from a hat. Suppose the numbers in the hat are such that the mean of $w(k)=0$ and the variance of $\mathrm{w}(\mathrm{k})$ is Q . we will take $\mathrm{Q}=100$ for example.
- $\mathrm{w}(\mathrm{k})$ is called white noise, which means it is not correlated with any other random variables and most especially not correlated with past values of w.

7.2.2 Starting the KF Procedure

A Kalman filter needs an initial estimate to get started. It is like an automobile engine that needs a starter motor to get going. Once it gets going it doesn't need the starter motor anymore. Same with the Kalman filter. It needs an initial estimate to get going. Then it won't need any more estimates from outside. In later lessons we will discuss possible sources of the initial estimate but for now just assume some person came along and gave it to you.

- Now suppose that at time t 0 someone came along and told you he thought $\mathrm{x}(\mathrm{t} 0)=1000$ but that he might be in error and he thinks the variance of his error is equal to P .
\pm Suppose that you had a great deal of confidence in this person and were, therefore, convinced that this was the best possible estimate of $\mathrm{x}(\mathrm{t} 0)$. This is the initial estimate of x . It is sometimes called the a priori estimate.

7.2.3 First Step (State-Prediction)

- So we have an estimate of $\mathrm{x}(\mathrm{t} 0)$, which we will call $\mathrm{xe}=$ 1000.
- The variance of the error in this estimate is defined by $\mathrm{P}=\mathrm{E}$ $\left[(x(t 0)-x e)^{2}\right]$, e.g., we will take $P=40,000$
- Now we would like to estimate $\mathrm{x}(\mathrm{t} 1)$:

$$
\mathrm{x}(\mathrm{tk}+1)=\mathrm{Ax}(\mathrm{tk})+\mathrm{w}(\mathrm{k}) \rightarrow \mathrm{x}(\mathrm{t} 1)=\mathrm{Ax}(\mathrm{t} 0)+\mathrm{w}(0)
$$

- Dr. Kalman says our new best estimate of $x(t 1)$ is given as

$$
\text { newxe }=\text { Axe } \quad(\text { equation } 1)
$$

in our numerical example 900

- Why Dr. Kalman is right: We have no way of estimating w(0) except to use its mean value of zero!

7.2.3 Second Step (Variance-Prediction)

- What is the variance of the error of this estimate?

$$
\text { newP }=\mathrm{E}\left[(\mathrm{x}(\mathrm{t} 1)-\text { newxe })^{2}\right]
$$

- Substitute the above equations in for $\mathrm{x}(\mathrm{t} 1)$ and newxe, then

$$
\begin{gathered}
\text { newP }=\mathrm{E}\left[(\mathrm{Ax}(\mathrm{t} 0)+\mathrm{w}-\mathrm{Axe})^{2}\right] \\
\left.=\mathrm{E}\left[\mathrm{~A}^{2}(\mathrm{x}(\mathrm{t} 0)-\mathrm{xe})^{2}\right]+\mathrm{E} \mathrm{w}^{2}+2 \mathrm{FE}(\mathrm{x}(\mathrm{t} 0)-\mathrm{xe})^{*} \mathrm{w}\right]
\end{gathered}
$$

- The last term is zero because w is assumed to be uncorrelated with $x(t 0)$ and $x e$. Then,

$$
\text { new } \mathrm{P}=\mathrm{PA}^{2}+\mathrm{Q} \quad(\text { Equation } 2)
$$

- For our example, we have

$$
\text { newP }=40,000 \mathrm{X} .81+100=32,500
$$

Kalman Filter Formulation

$$
x_{k}=A x_{k-1}+B u_{k}+w_{k-1}, \quad z_{k}=H x_{k}+v_{k} . \quad p(w) \sim N(0, Q)
$$

Priori estimation

(2) Prufect the error covariance ahead

$$
P_{k}^{-}=A P_{k-1} A^{T}+Q
$$

Measurement Update ("Correct")
(1) Compute the Kalman gain

$$
K_{k}=P_{k}^{-} H^{T}\left(H P_{k}^{-} H^{T}+R\right)^{-1}
$$

(2) Update estimate with measurement z_{k}

$$
\hat{x}_{k}=\hat{x}_{k}^{-}+K_{k}\left(z_{k}-H \hat{x}_{k}^{-}\right)
$$

(3) Update the error covariance

$$
P_{k}=\left(I-K_{k} H\right) P_{k}^{-}
$$

Initial estimates for \hat{x}_{k-1} and P_{k-1}
Figure 4.2: A complete picture of the operation of the Kalman filter, combining the high-level diagram of Figure 4.1 with the equations from table 4.1 and table 4.2 .

7.2.4 Third Step (Measurement)

- Now, let us assume we make a noisy measurement of x . Call the measurement y and assume y is related to x by a linear equation. (Kalman assumed that all the equations of the system are linear. This is called linear system theory.)

$$
y(1)=H x(t 1)+v(1)
$$

where v is white noise with the variance denoted as R .

- H is some number whose value we know. We will use for our numerical example $\mathrm{H}=1, \mathrm{R}=10,000$ and $\mathrm{y}(1)=1200$
- Notice that if we wanted to estimate $y(1)$ before we look at the measured value we would use

$$
\mathrm{ye}=\mathrm{H} * \text { newxe }
$$

- for our numerical example we would have ye $=900$

7.2.5 Fourth Step (State-Updating)

- Dr. Kalman says the new best estimate of $\mathrm{x}(\mathrm{t} 1)$ is given by

$$
\begin{aligned}
& \text { newerxe }=\text { newxe }+\mathrm{K}^{*}\left(\mathrm{y}(1)-\mathrm{H}^{*} \text { newxe }\right) \\
& =\text { newxe }+\mathrm{K}^{*}(\mathrm{y}(1)-\text { ye }) \quad(\text { equation } 3)
\end{aligned}
$$

- where K is a number called the Kalman gain.
- Notice that $\mathrm{y}(1)$ - ye is just our error in estimating y(1). For our example, this error is equal to plus 300 . Part of this is due to the noise, v and part to our error in estimating x .
- If all the error were due to our error in estimating x, then Setting K=1 would correct our estimate by the full 300 . But since some of this error is due to v , we will make a correction of less than 300 to come up with newerxe. We will set K to some number less than one.

7.2.6 Fifth Step (Variance-Updating)

- What value of K should we use? Before we decide, let us compute the variance of the resulting error

$$
\begin{gathered}
\mathrm{E}(\mathrm{x}(\mathrm{t} 1)-\text { newerxe })^{2}=\mathrm{E}[\mathrm{x}-\text { newxe }-\mathrm{K}(\mathrm{y}-\mathrm{H} \text { newxe })]^{2} \\
=\mathrm{E}\left[(\mathrm{x}-\text { newxe }-\mathrm{K}(\mathrm{Hx}+\mathrm{v}-\mathrm{H} \text { newxe })]^{2}\right. \\
=\mathrm{E}[\{(1-\mathrm{KH})(\mathrm{x}-\text { newxe }) 2+\mathrm{Kv}\}]^{2} \\
=\text { newP }(1-\mathrm{KH})^{2}+\mathrm{R}^{2}
\end{gathered}
$$

- where the cross product terms dropped out because v is assumed to be uncorrelated with x and newxe. So the newer value of the variance is now given by

$$
\text { newerP }=\operatorname{newP}(1-\mathrm{KH})^{2}+\mathrm{R}\left(\mathrm{~K}^{2}\right)
$$

(equation 5)

7.2.7 Sixth Step (Kalman Gain)

- If we want to minimize the estimation error we should minimize newerP. We do that by differentiating newerP withrespect to K and setting the derivative equal to zero and then solving for K. A little algebra shows that the optimal K is given by

$$
\mathrm{K}=\mathrm{H} \text { new } \mathrm{P} /\left[\text { new } \mathrm{P}\left(\mathrm{H}^{2}\right)+\mathrm{R}\right] \quad(\text { Equation } 4)
$$

- For our example,

$$
K=.7647
$$

- \quad newerxe $=1129$
- newerP = 7647
- Notice that the variance of our estimation error is decreasing

7.2.8 Summary- Kalman Formulation-I

- $\mathrm{x}(\mathrm{tk}+1)=\mathrm{Ax}(\mathrm{tk})+\mathrm{w}(\mathrm{k})$
- $y(k)=H x(t k)+v(k)$

Prediction:

- newxe $=$ Axe
(equation 1)
- newP $=\mathrm{PA}^{2}+\mathrm{Q}$
(Equation 2)

Updating:

- newerxe $=$ newxe $+\mathrm{K}^{*}(\mathrm{y}-\mathrm{ye})$

■ $\mathrm{K}=\mathrm{H}$ newP/[newP($\left.\left.\mathrm{H}^{2}\right)+\mathrm{R}\right]$

- newerP $=\operatorname{new} P(1-K H)^{2}+\mathrm{R}\left(\mathrm{K}^{2}\right)$
(equation 3)
(Equation 4)
(equation 5)

7.3 Kalman Formulation-II

Summary

$$
\begin{aligned}
& x_{k}^{-}=A \bar{x}_{k-1} \\
& P_{k}^{-}=A P_{k-1} A^{T}+Q
\end{aligned}
$$

$$
K=P_{k}^{-} H^{T}\left(H P_{k}^{-} H^{T}+R\right)^{-1}
$$

$$
\begin{aligned}
& x_{k}=x_{k}^{-}+K\left(z_{k}-H x_{k}^{-}\right) \\
& P_{k}=(I-K H) P_{k}^{-}
\end{aligned}
$$

7.3 Kalman Formulation-III

Signalmodel

$$
\begin{aligned}
& s(n)=A(n) s(n-1)+w(n) \\
& x(n)=H(n) s(n)+v(n)
\end{aligned}
$$

Antagelser:

$$
\begin{aligned}
& w(n) \in \mathrm{NID}(\underline{0}, Q(n)) \\
& v(n) \in \mathrm{NID}(\underline{0}, R(n)) \\
& s(1) \in \mathrm{N}(\underline{0}, P(1))
\end{aligned}
$$

Kalman filter rekursionsligningerne - prediktionsform
Notation:
$\hat{s}(n+1 \mid n)=\mathrm{E}(s(n+1) \mid x(n), \ldots, x(1)):$ tilstands prediktion af $s(n+1)$ baseret på målinger op til og med n.

Initial værdier:

$$
\begin{aligned}
& \hat{s}(1 \mid 0)=\underline{0} \\
& P(1)
\end{aligned}
$$

Rekusion:
$w(n), v(n)$ og $s(1)$ er uafhængige

$$
\begin{align*}
& K(n)=P(n) H(n)^{T}\left(H(n) P(n) H(n)^{T}+R(n)\right)^{-1} \tag{3}\\
& \hat{s}(n+1 \mid n)=A(n+1)[\hat{s}(n \mid n-1)+K(n)(x(n)-H(n) \hat{s}(n \mid n-1))] \tag{4}\\
& P(n+1)=A(n+1)[(I-K(n) H(n)) P(n)] A(n+1)^{T}+Q(n) \tag{5}
\end{align*}
$$

System Identification

Parameter Optimization

Error (Cost)

"Truth"

On-Line Multiple-Model Estimation

Actual meas.
seq.
Z*

Probability of Model μ

For model $\boldsymbol{\mu}$ with $\Pi_{\mu}=\{x, P, H, R\}$

$$
p\left(\mu \mid z, \Pi_{\mu}\right)=\frac{1}{(2 \pi|C|)^{\frac{n}{2}}} e^{-\frac{1}{2}(z-H x)^{T} C^{-1}(z-H x)}
$$

where

$$
C=H P H^{T}+R
$$

Final Combined Estimate

$$
\hat{x}=\sum_{\mu} \not f_{\mu} \frac{p\left(\mu \mid z, \prod_{\mu}\right)}{\sum_{v} p\left(v \mid z, \prod_{v}\right)}
$$

[^0]:

