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MM7. Kalman Filter (Part one) 
Reading page: Chapt 7, pp.406-419

�Explain MM6 exercise 
�7.1 Introduction
�7.2 An Intuitive Description of Kalman filter
�7.3 Formal Description of Scale Kalman Filter
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What have we talked through MM6 
– Discrete-Time Wiener Filters?

6.1 (Ideal) Noncausal Wiener Filters
6.2 Causal Wiener Filters
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Discrete-Time Wiener Filters

Motivation:
� Estimate a WSS random sequence Y(n) based on the 

observation of another sequence X(n).

� Without loss of generality we assume that 
E{Y(n)}=E{X(n)}=0

� The goodness of the estimator is described by MSE
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6.1 Ideal (Noncausal) Wiener Filters
� Problem Formulation:
Seek a linear filter 

Which minimizes the MSE 

The filter reaching above requirement is called ideal 
(noncausal) Wiener filter 
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6.1.3 Wiener Filter via LMMSEE
� Wiener filter:

� MSE residual: 
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� LMMSEE:

� MSE residual: 
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6.2.7 Finite Wiener Filter
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� LMMSEE:

� MSE residual: 
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Explain the MM6 Exercise!
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MM7. Kalman Filter (Part one) 
Reading page: Chapt 7, pp.406-419

�Explain MM6 exercise 
�7.1 Introduction
�7.2 An Intuitive Description of Kalman filter
�7.3 Formal Description of Scale Kalman Filter
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7.1 Introduction
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7.1.1 What’s Kalman Filter?
� One of the most well-known and often-used math. Tools 

for stochastic estimation from noisy measurements
� Rudolph E. Kalman in 1960 published his famous paper 

decribing a recursive solution to discrete-time linear 
filtering problem

Features
� Just some applied mathematics
� A linear system
� Noisy data in � hopefully less noisy output
� Delay is the price for filtering
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7.1.2 What is it used for?
� Target (missiles etc) tracking
� Navigation
� Feedback control 
� Computer vision 
� Economics
� An example is estimating the position and velocity of a 

satelite from radar data. There are 3 components of 
position and 3 of velocity so there are at least 6 variables 
to estimate. These variables are called state variables. 
With 6 state variables the resulting Kalman filter is called 
a 6 dimensional Kalman filter. 
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7.1.3 Kalman Filter Formulation-I

Priori estimation

Posteri estimation
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7.2 An Intuitive Explanation

INTRODUCTORY LESSON
The one dimensional Kalman Filter

PDJoseph@compuserve.com
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7.2.1 Assumptions
� Suppose we have a random variable x(t) whose value we 

want to estimate at certain times t0 ,t1, t2, t3, etc. Also, 
suppose we know that x(tk) satisfies a linear dynamic 
equation 

x(tk+1) = Ax(tk) + w(k) (the dynamic equation)
� F is a known number. In order to work through a 

numerical example let us assume A= 0.9
� Kalman assumed that w(k) is a random number selected 

by picking a number from a hat. Suppose the numbers in 
the hat are such that the mean of w(k) = 0 and the 
variance of w(k) is Q. we will take Q=100 for example. 

� w(k) is called white noise, which means it is not 
correlated with any other random variables and most 
especially not correlated with past values of w. 
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7.2.2 Starting the KF Procedure
� A Kalman filter needs an initial estimate to get started. It 

is like an automobile engine that needs a starter motor to 
get going. Once it gets going it doesn't need the starter 
motor anymore. Same with the Kalman filter. It needs an 
initial estimate to get going. Then it won't need any more 
estimates from outside. In later lessons we will discuss 
possible sources of the initial estimate but for now just 
assume some person came along and gave it to you. 

� Now suppose that at time t0 someone came along and told 
you he thought x(t0) = 1000 but that he might be in error 
and he thinks the variance of his error is equal to P. 
Suppose that you had a great deal of confidence in this 
person and were, therefore, convinced that this was the 
best possible estimate of x(t0). This is the initial estimate 
of x. It is sometimes called the a priori estimate. 
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7.2.3 First Step (State-Prediction)
� So we have an estimate of x(t0),which we will call xe = 

1000. 
� The variance of the error in this estimate is defined by P = E 

[(x(t0) -xe)2], e.g., we will take P = 40,000

� Now we would like to estimate x(t1):
x(tk+1) = Ax(tk) + w(k) �x(t1) = Ax(t0) + w(0)

� Dr. Kalman says our new best estimate of x(t1) is given as
newxe = Axe (equation 1) 

in our numerical example 900
� Why Dr. Kalman is right: We have no way of estimating w(0) except to 

use its mean value of zero!
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7.2.3 Second Step (Variance-Prediction)

� What is the variance of the error of this estimate? 
newP = E [(x(t1) - newxe)2]

� Substitute the above equations in for x(t1) and newxe, then
newP = E [(Ax(t0) + w -Axe)2] 

= E[A2(x(t0) - xe)2]+ E w2 + 2F E (x(t0)- xe)*w] 
� The last term is zero because w is assumed to be 

uncorrelated with x(t0) and xe. Then, 
newP = PA2 + Q            (Equation 2)

� For our example, we have 
newP = 40,000 X .81 + 100 = 32,500
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Kalman Filter Formulation

Priori estimation
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7.2.4 Third Step (Measurement)

� Now, let us assume we make a noisy measurement of x. 
Call the measurement y and assume y is related to x by a 
linear equation. (Kalman assumed that all the equations of 
the system are linear. This is called linear system theory.) 

y(1) = Hx(t1) + v(1)
where v is white noise with the variance denoted as R. 

� H is some number whose value we know. We will use for 
our numerical example H = 1 , R= 10,000 and y(1) = 1200

� Notice that if we wanted to estimate y(1) before we look at 
the measured value we would use 

ye = H*newxe
� for our numerical example we would have ye = 900 
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7.2.5 Fourth Step (State-Updating)
� Dr. Kalman says the new best estimate of x(t1) is given by 

newerxe = newxe + K*(y(1) -H*newxe) 
= newxe + K*(y(1) - ye)      (equation 3) 

� where K is a number called the Kalman gain. 
� Notice that y(1) - ye is just our error in estimating y(1). For 

our example, this error is equal to plus 300. Part of this is 
due to the noise, v and part to our error in estimating x. 

� If all the error were due to our error in estimating x, then 
Setting K=1 would correct our estimate by the full 300. But 
since some of this error is due to v, we will make a 
correction of less than 300 to come up with newerxe. We 
will set K to some number less than one. 
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7.2.6 Fifth Step (Variance-Updating)
� What value of K should we use? Before we decide, let us 

compute the variance of the resulting error 

E (x(t1) - newerxe)2 = E [x - newxe - K(y - H newxe)]2

= E [(x - newxe - K(Hx + v - H newxe)]2

= E [{(1 - KH)(x - newxe)2 +Kv}]2

= newP(1 - KH)2 + R2

� where the cross product terms dropped out because v is 
assumed to be uncorrelated with x and newxe. So the 
newer value of the variance is now given by 

newerP = newP(1 - KH)2 + R(K2)              (equation 5)
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7.2.7 Sixth Step (Kalman Gain)

� If we want to minimize the estimation error we should 
minimize newerP. We do that by differentiating newerP
withrespect to K and setting the derivative equal to zero 
and then solving for K. A little algebra shows that the 
optimal K is given by 

K = H newP/[newP(H2) + R]     (Equation 4)

� For our example, 
� K = .7647 
� newerxe = 1129 
� newerP = 7647 
� Notice that the variance of our estimation error is decreasing
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7.2.8 Summary- Kalman Formulation-I

� x(tk+1) = Ax(tk) + w(k)    (Q)
� y(k) = Hx(tk) + v(k)           (R)
Prediction:
� newxe = Axe (equation 1)
� newP = PA2 + Q                                         (Equation 2)
Updating: 
� newerxe = newxe + K*(y - ye)                  (equation 3)
� K = H newP/[newP(H2) + R]                    (Equation 4)
� newerP = newP(1 - KH)2 + R(K2)              (equation 5)
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7.3 Kalman Formulation-II
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7.3 Kalman Formulation-III
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