MM2 Approximate Evaluation
of Functions

* kl.8.15-9.00 review of MM1 and some
examples

* kl.9.00 — 10.30 exercise (see notes)
* kl.10.40-11.30 MM2 lecture (1)

What does NM concern?(MM1)

Number representations and errors
Accuracy and precision
Computation speed

Required computation power
Efficiency

Robustness

Robust, efficient computing algorithms with
prescribed (acceptable) accuracy
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Floating-point representation (MM1)

* significant digits x base®xponent

Base (radix):

decimal (10), binary (2), hexadecimal (16)
Mantissa (significant digits, significand)
Exponent
Normalization

floating-point numbers achieve their greater range at the
expense of precision.

Measures of errors (MM1)

* Regarding to a number
— Absolute error
— Relative error

* Regarding to a function
— L_infty norm
—L_1 norm
—L_2norm




Matlab Basics (MM1)

* Format short, long, short e,

» String, print (fprintf)

« Arithemetic operations

* Mathematical functions

* Vectors (column, row)

» Colon, semi-colon _
e Linspace, logspace

* Array arithmetic

» String functions

Conversion methods:
- from Decimal to Binary

http://www.wikihow.com/Convert-
from-Decimal-to-Binary
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Method-1: Comparison with descending

powers of two and subtraction

List the powers of two in a "base 2 table" from right to left.

128-64-32-16-8-4-2 -1
‘ The base 2 table

The decimal number wa want to convert
’ A C D E G I K L The answer

156 = 1 o o0 1 1 1 o 0
-1288

28
-16 F
12 A, 128 goes into 158 1 ime, Write down a 1.
_-8H B. Subtract 128 from 156
4 C. 84 goes into 28 0 times. Write down a O
_4J D. 32 goes into 28 O times. Write down a O
0 E. 16 goes into 28 1 time. Write down a 1.

F. Subtract 16 from 28.

G. B goes into 12 1 times. 'Write down a 1
H. Subtract 8 from 12

I.4 goes into4 1 time. Write down a 1.

J. Subtract 4 from 4.

K.2goesinto 0 0 times. Write down a 0.
L. 1goesinto 0 O times. Write down a O

Method-2: Division by two with remainder

Write the integer answer (quotient) under the long
division symbol, and write the remainder (0 or 1) to the

right of the dividend.

Continue downwards, dividing each new quotient by two
and writing the remainders to the right of each dividend.
Stop when the quotient is 0

Starting with the bottom remainder, read the sequence of
remainders upwards to the top. You should have
10011100. This is the binary equivalent of the decimal

number
This method can be modified to convert from decimal to

any base

N
=
a1
(o2}

I\)I\)NMM
EER
O |©O |00
R OOR
PR Og

N N
ORRER

4/13/2010



Conversion methods:
Convert from Binary to Decimal

http://www.wikihow.com/Convert-
from-Binary-to-Decimal

Method-1: Positional notation method

« List the powers of two from right to left. Start at 2°0. Increment the
exponent by one for each power. Stop when the amount of elements

in the list is equal to the amount of digits in the binary number.

128 64 32 16 8 4 2 1

VLR

10011 0 11

128+0 +0+16+8+0 +2+1 = 155

10
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Method-2: Doubling method

» Start with the left-most digit of the given binary number.

For each digit as you move to the right, double your
previous total and add the current digit.

1011001
1011001
1011001
1011001
1011001
1011001
1011001

=

> 0%2+1 = 1

> 1¥2+0 = 2

> 2%24+1 = 5
»5*2+1=11

P 11%2+0 — 22

P 22%2+0 — 44

» 44%2+1 - 89

1

Conversion methods:
Convert Decimal Fractions to Binary

« Step 1: Begin with the decimal fraction and multiply by 2. The whole
number part of the result is the first binary digit to the right of the

point.

» Step 2: Next we disregard the whole number part of the previous

result and multiply by 2 once again. The whole number part of this

new result is the second binary digit to the right of the point. We will
continue this process until we get a zero as our decimal part or until
we recognize an infinite repeating pattern.

 Infinite Binary Fractions

Example: 0.625,, = 0.101 (base 2)
1/10,, = ??? (base 2)

12
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Approximate Error Analysis

Determine the

< N
e=exp)=) —, €=exp@)=) —,
number of terms of gn! zon

the exponential eg-yt-ityl 1N __ 1
series required to et NEGNT O NEN-T (N DN -D)!
estimate e to three 1 1
decimal places N=6 gy =L000710% N=7, cor=23148-10"
(example 1.4, p.9)

é=exp@d) = nz:‘% =2.7181~2.718

6 6 o
2.7181= 23 <e< Zi' +zl| =2.7181+2.3148x10* =2.7183
n :

n:On! noN: w7 N

13

Matlab Codes for error analysis (example)

clear clc % clear the workspace and move the cursor at the beginning
y=1 % n=0 term
i=0 % counter
sum=1 % sum all terms so far obtained
while y>10e-4 % while loop controlled by first truncated term
i=i+1
y=y*1/i;
sum=sum+y
end

% matlab built-in function for exponational
ym=exp(1)

% comparison between our calculation and Matlab function

error=sum-ym

14
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Exercises (MM1)

15

Question One:

(Exercise 1.2.1, page 7) Express the base of natural logarithms e as a normalized floating-point number, using
both chopping and symmetric rounding, for each of the following systems:

e (a) base 10 with 4 significant digits;

¢ (b) base 10 with 7 significant digits;

e [c) base 2 with 10 significant bits.

Question Two:

(Exercise 1.2.2, page 7) Write down the normalized binary floating-point representations of 1/3, 1/5 and 1/6.

Use enough bits in the mantissa to see the recurring patterns.

Question Three:

(Exercise 1.3.3, page 11) How many terms of the series expression

sh( )*1+‘t2+m4+ ot
cosh(z) = T 5]

[

are needed to estimate cosh(1/2) with a truncation error less than 10732 check your answer by comparing with

Matlab built-in cosh function.

Question Four:

(Exercise 1.5.1, page 19) Let = = 1.3576, y = 1.3754. For a hypothetical four decimal digit machine, write
down the representations # and ¢ of x, y. Find the relative errors in the stored results of x + 4, © — y,2y, and
x/y using

¢ (a) chopping, and

e (b) symmetric rounding.
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MM2 Approximate Evaluation

of Functions

Reading material:
Subsection 3,1, 3,2, and 3.4

17

Question

* How does machine compute values of some functions?

Such as
e >>]og(1.5)
e ans = 0.4055
e >>c0s(100)
e ans= 0.8623
e >>sinh(29)

Elementary functions:
Log(x)

Cos(x)

Sinh(x)

Exp(x)

e ans = 1.9657e+012

« >>exp(-5)
e ans= 0.0067

Arithmetic operation
Approximation?
18
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Series Expansions

geometric series :

L:Zxk:1+x+x2+---, | x|]<1
1-x %
exp onential series :
00 k 2 3
X X X
exp(xX)=> — =1+X+— +— +---, all x
P(X) kz:jk! 21 3l
trigonomet ric functions :
2 4
cosx—z( DX _ XX all x
= (2k)! 2 4l
2k+1 3 5
smx—z( D*x _x- XX all x
(2k +1)! 31 5l 19

Concerns of Using Series
Approximate

» Radius of convergence of the series expansion, e.g.,
geometric series

» Truncation error / precision

 Efficient approximate algorithms

— Approximate of pi using arctan expansion at arctan(1)=pi/4 for
IEEE double precision requires 10716 number of terms, it will
take nearly 4 months to obtain the value (see Example 3.2, page
55)

— Same task using arctan expansion at arctan(1/sqrt(3))=pi/6 only
requires 30 terms, it takes one-millionth of a second (see
Example 3.5, page 59)

 CORDIC algorithms 20
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General Series Expansion

Recall from caleulus the Taylor’s series for a function, f(x), expanded about some number, ¢, is
written as

flz) ~an+a)(z—c)+ax(x —012 +....

Here the symbol ~ is used to denote a “formal series,” meaning that convergence is not guaranteed
in general. The constants a; are related to the function f and its derivatives evaluated at ¢. When
e = (), this is a MacLaurin series.

For example we have the following Taylor’s series (with ¢ = 0):

z? 2
e':l-l-:r-l-iﬁ-i-l-... (1.1)
) P
sin(z) =2 — ol + =i (1.2)
a2 g .
ms{;zt)zl—iﬁ—z—... (1.3)

Taylor's Theorem

Theorem 1.1 (Taylor’s Theorem). If f(z) has derivatives of order 0,1,2,...,n41 on the closed
interval [a,b], then for any 2 and ¢ in this interval

=0 (2=)F () (2 - o)
f(“)*kzz:g 7 + CES

where £ is some number between 2 and ¢, and fk(;v) is the k'™ derivative of f at .

We will nse this theorem again and again in this class. The main nsage is to approximate
a function by the first few terms of its Taylor’s series expansion; the theorem then tells us the
approximation is “as good” as the final term, also known as the error term. That is, we can make
the following manipulation:

L n j(“ (C) (I _ C)k B “-(n+1) (£)| ‘1. _ c|n+1 o el
flz) — ;} i = 1) <M |x—c" .

22
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Example-1 of Taylor Series

Example Problem 1.2. Find an approximation for f(x) = sinz, expanded about ¢ = 0, using
n=3. ‘
Solution. Solving for f*) is fairly easy for this function. We find that

f(z)=sinz = sin(0)+ cos(0)x | —sin(0)2? 4= cos(0)a? | sin(€) 2*

1! 2! 3! 4!
_ 3 sin(€) 2t
B 6 2
80
) z® sin(¢)at| 2t
sine— (2 —-=|| = <=,
) 6 U |-
because [sin(£)| < 1. -

23

Example-2 of Taylor Series

[Example Problem 1.4, Apply Taylor’s Theorem to expand f(x) = 23— 2122 +17 around ¢ = 1.
[Solution: Simple calculus gives us

fO) = 22 —2122 417,
fm(;z‘) = 3% — 422,
@) = 6z —42,
@) = 6,

@) = o.

with the last holding for k > 3. Evaluating these at ¢ =1 gives

i 12 ffm )3
fl(-1‘23=—3+—39(.13—1}-|-_36('1' ) _|_6(-7- 1) .

2 i
[Note there is no error term, since the higher order derivatives are identically zero. By carrying out
kimple algebra, you will find that the above expansion is, in fact, the function f(z). a
24
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Alternative Form

Theorem 1.5 (Taylor’s Theorem, Alternative Form). If f(z) has derivatives of order 0,1,...,n+
1 on the closed interval [a,0], then for any x in this interval and any h such that o + h is in this
interval,

=SB () ) (!
f(‘l+h)_§ T V.

where £ is some number hetween x and z + h.

We generally apply this form of the theorem with A — (. This leads to a discussion on the
matter of Orders of Convergence. The following definition will suffice for this class

LA GECERD P il N CandD i

0=} - xS

25

Big-Oh of hk

Definition 1.6. We say that a function f(h) is in the class O (h*) (pronounced “big-Oh of 1*")
if there is some constant C' such that
hf*

fh) <C
for all h “sufficiently small,” i.e., smaller than some /* in absolute value.
For a function f € O (hk ) we sometimes write f = O (h"‘). We sometimes also write O (hk),
meaning some function which is a member of this class.

Roughly speaking, through use of the “Big-O" function we can write an expression without
“sweating the small stuff.” This can give us an intuitive understanding of how an approximation
works, without losing too many of the details.

26
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One Example

Ioxample 1.7. Consider the Taylor expansion of In a:

(1/z) b (—l,f;l‘z) h? (2;’53) n®
1 i 2 * ]

In(z+h) = Inz+
[Letting = 1, we have

, R 1,
In(l+h) = h—?%—@h .

Using the fact that £ is between 1 and 1+ h, as long as f is relatively small (say smaller than
fhe term zlg- can be hounded by a constant, and thus

h? ‘
mum):h—%+owy

Thus we say that h — % isa @ (h.a) approximation to In(1 4 k). For example

2
In(1 4+ 0.01) = 0.009950331 ~ 0.00995 = 0.01 — %

27
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