MM3 Iterative Solution of Equations

- kl.8.15-9.00 review of MM2 and some examples
- kl.9.00-10.30 exercise (see notes)
- kl. 10.40-11.30 MM3 lecture (I)

Conversion Methods from Decimal to Binary (MM2)

- Method-1: Comparison with descending powers of two and subtraction
- Division by two with remainder

$2 \lcm{156}$	0
$2 \lcm{78}$	0
$2 \lcm{39}$	1
$2 \lcm{19}$	1
$2 \lcm{9}$	1
$2 \lcm{4}$	0
$2 \lcm{2}$	0
$2 \lcm{1}$	1
0	

Conversion Methods from Binary to Decimal (MM2)

- Positional notation method

- Doubling method

1. $\mathbf{1 0 1 1 0 0 1} \rightarrow 0^{*} 2+\mathbf{1}=1$
2. $1011001 \rightarrow 1 * 2+0=2$
3. $1011001 \rightarrow 2 * 2+1=5$
4. $1011001 \rightarrow 5 * 2+\mathbf{1}=11$
5. $1011001 \rightarrow 11 * 2+\mathbf{0}=22$
6. $1011001 \rightarrow 22 * 2+0=44$
7. $1011001 \rightarrow 44 * 2+\mathbf{1}=89_{10}$

Conversion methods from Decimal Fractions to Binary (MM2)

- Step 1: Begin with the decimal fraction and multiply by 2. The whole number part of the result is the first binary digit to the right of the point.
- Step 2: Next we disregard the whole number part of the previous result and multiply by 2 once again. The whole number part of this new result is the second binary digit to the right of the point. We will continue this process until we get a zero as our decimal part or until we recognize an infinite repeating pattern.
- Infinite Binary Fractions

$$
\text { Example: } \begin{gathered}
0.625_{10}=0.101(\text { base } 2) \\
1 / 10_{10}=? ? ?(\text { base } 2)
\end{gathered}
$$

Series Expansions (MM2)

geometric series :
$\frac{1}{1-x}=\sum_{k=0}^{\infty} x^{k}=1+x+x^{2}+\cdots, \quad|x|<1$
exp onential series :
$\exp (x)=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots, \quad$ all x
trigonomet ric functions :
$\cos x=\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k}}{(2 k)!}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots, \quad$ all x
$\sin x=\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k+1}}{(2 k+1)!}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots, \quad$ all x

Taylor's Theorem (MM2)

Theorem 1.1 (Taylor's Theorem). If $f(x)$ has derivatives of order $0,1,2, \ldots, n+1$ on the closed interval $[a, b]$, then for any x and c in this interval

$$
f(x)=\sum_{k=0}^{n} \frac{f^{(k)}(c)(x-c)^{k}}{k!}+\frac{f^{(n+1)}(\xi)(x-c)^{n+1}}{(n+1)!}
$$

where ξ is some number between x and c, and $f^{k}(x)$ is the $k^{\text {th }}$ derivative of f at x.

We will use this theorem again and again in this class. The main usage is to approximate a function by the first few terms of its Taylor's series expansion; the theorem then tells us the approximation is "as good" as the final term, also known as the error term. That is, we can make the following manipulation:

$$
\left|f(x)-\sum_{k=0}^{n} \frac{f^{(k)}(c)(x-c)^{k}}{k!}\right|=\frac{\left|f^{(n+1)}(\xi)\right||x-c|^{n+1}}{(n+1)!} \leq M|x-c|^{n+1}
$$

Example-1 of Taylor Series

Example Problem 1.2. Find an approximation for $f(x)=\sin x$, expanded about $c=0$, using
$n=3$.
Solution: Solving for $f^{(k)}$ is fairly easy for this function. We find that

$$
\begin{aligned}
f(x)=\sin x= & \sin (0)+\frac{\cos (0) x}{1!}+\frac{-\sin (0) x^{2}}{2!}+\frac{-\cos (0) x^{3}}{3!}+\frac{\sin (\xi) x^{4}}{4!} \\
= & x-\frac{x^{3}}{6}+\frac{\sin (\xi) x^{4}}{24}, \\
& \left|\sin x-\left(x-\frac{x^{3}}{6}\right)\right|=\left|\frac{\sin (\xi) x^{4}}{24}\right| \leq \frac{x^{4}}{24},
\end{aligned}
$$

so
because $|\sin (\xi)| \leq 1$.
clear, clc
coef $=[-1 / 6,0,1,0]$
$y=\operatorname{polyval}($ coef, 0.2$)$
display('app. value of $\cos (0.2)$ is'); y
pause
$x=-0.2: .01: 0.2$
y = polyval(coef,x);
plot($x, y,{ }^{\prime}$ 'r.'); grid; hold on
plot $(x, \sin (x))$; hold off

```
% large range
x2=-4:0.01:4;
y2 = polyval(coef,x2);
plot(x2,y2,'r.'); grid
hold on
plot(x2,\operatorname{sin}(x2))
hold off
```


Matlab Functions: polyval(), feval()

Download ployevalexample.m

clear, clc
\% coeffcients of polynominal:
coef $=[-1,1,2]$
\% function value at point 4
$\mathrm{y}=$ polyval(coef,4)
display('value of $y=-x^{\wedge} 2+x+2$ at point $x=4$ is')
y
pause
\% evaluation of poly. function with an interval
$\%$ e.g., $y=-x^{\wedge} 2+x+2$ within $[-2,2]$
$\%$ a vector to represent $[-2,2]$ with step 0.1
$x=-2: .1: 2$
$\%$ function values as a vector y
y = polyval(coef,x);
\% plotthe function within the defined interval plot(x,y,'r.'); grid
title(' $y=-x^{\wedge} 2+x+2$ ')

Download erfapp.m

\% 2 erf function approximation

function $\mathrm{y}=\operatorname{erfapp}(\mathrm{x}, \mathrm{p})$
$\mathrm{y}=\mathrm{x} .{ }^{*}$ 2/sqrt(pi);
term=1;
for $\mathrm{i}=1$: p
term=term/(i);
$y=y+2 / s q r t(p i)^{*}(-1)^{\wedge} i^{*} x . \wedge^{\wedge}\left(2^{*} i+1\right)$; end

Exercises (MM2)

Question One:

Regarding to the function $f(x)=\cos (x)$,

- Derive the Taylor expansion of it up to 5 th order at the point $x=0$;
- Use the above polynomial to approximate $\cos (-0.2)$ and
- Evaluate the approximation error using Taylor's Theorem.

Question Two:

(Exercise 3.2.2 and 3.2.2, page 60) Function $\ln (1+x)$ can be approximated by a power series as

$$
\ln (1+x)=-\sum_{k=0}^{\infty} \frac{(-1)^{k+1} x^{k+1}}{k+1}=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4} \cdots
$$

- Write a Matlab m-file to approximate $\ln (1.25)$ using the first 6 terms of equation (1);
- How many terms of the series (1) are needed to approximate $\ln (1.25)$ with error smaller than 10^{-6} ?
- Use Matlab's built-in function $\log ()$ to verify that the error of the above second analysis is indeed within the tolerance.

Question Three:

The function $\operatorname{erf}(x)$ is defined as

$$
\begin{equation*}
\operatorname{erf} f(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t \tag{2}
\end{equation*}
$$

This function is often used in the probabilistic analysis of normalized stochastic variable.

- Derive the series approximation of function e^{x} up to 9th order at point $x=0$;
- Use the series approximation obtained in last step to approximate $e^{t^{2}}$ and thereby prove that the series approximation of function erf looks like

$$
\begin{equation*}
\widehat{\operatorname{erf}}(x)=\frac{2}{\sqrt{\pi}} \sum_{k=0}^{9} \frac{(-1)^{k} x^{2 k+1}}{(2 k+1) k!} \tag{3}
\end{equation*}
$$

- Write a Matlab m-file to realize the approximation $\widehat{\operatorname{erf} f}(x)$ and plot this approximation within interval $[-2,2]$ and $[0,4]$, respectively;
- Use the Matlab's built-in function $\operatorname{erf}()$ and plot the difference (errors)between this function and approximation $\widehat{\operatorname{erf}}(x)$ within interval $[-2,2]$ and $[0,4]$, respectively;
- How to evaluate the approximation errors? Use the Matlab function norm (x, p) to evaluate the L_{1}-norm, L_{2}-norm and L_{∞}-norm of the errors within interval $[-2,2]$ and $[0,4]$, respectively.

MM3 Iterative Solution of Equations

Reading material: Section 2.1, 2.2, 2.3

Question

- How to represent numbers - MM1
- How to evalue functions - MM2
- How to solve equations?

What's the solution to $x^{\wedge} 2+5 x+6=0$?
What's the solution to $x^{\wedge} 10+5 x^{\wedge} 3+6=0$?
What's the solution to $\mathrm{F}(\mathrm{x})=0$?

Motivation

- $F(x)=0$
- Initial guess a_0, check $F\left(a_{-}\right)$? - error_0
- Second guess a_1, with objective is to try to reduce error_0, i.e., error_1 < error_0
- Thrid guess a_2, with objective is to try to reduce error_1, i.e., error_2 < error_1
-
- a_n has the property: $F\left(a _n\right)->0$

Iterative methods for solving equations

Concerns Using Iterative Methods

- Sequences
- Convergence of sequences

$$
\text { a_n-> L as n -> } \infty
$$

- Computing efficiency
- Iterative methods

Bisection Method

- Motivation: intermediate value Theorem
Continuous function $f(x)$ on an interval $[a, b]$ has the property: $f(a) f(b)<0$, then there is a solution of $f(x)=0$ between a and b.
- Algorithm
- Example: solution to x$\cos (x)=0$ with tolerance 0.1
- Matlab codes

input	•Equation $f(x)=0$ •Interval $[a, b]$ such that $f(a) f(b)<0$ •Tolerance e
repeat	m:=(a+b)/2 If $f(a) f(m)=<0$, then $b:=m$ else $a:=m$
until	b-a<e
output	Solution lies in $[a, b]$ with the length less than e

Function Iteration Method

- Motivation:

Rewrite $f(x)=0$ as $x-g(x)=0$, i.e., $\mathrm{x}=\mathrm{g}(\mathrm{x})$
Initial guess $x _0$
Iterative solution: $\mathrm{x} _\mathrm{n}=\mathrm{g}\left(\mathrm{x} _\mathrm{n}-1\right)$
How to guarantee the convergence?

Convergence Theorem for Function Iteration

Suppose that function $g(x)$ is differentiable on [a, b] and that
(1) $g(x) \in[a, b]$ for any $x \in[a, b]$, and
(2) $\left|\frac{d g(x)}{d x}\right| \leq K<1$ for all $x \in[a, b]$;

Then, the equation $x=g(x)$ has a unique solution in the interval $[a, b]$ and the iterative sequence defined by
$x_{0} \in[a, b], x_{n}=g\left(x_{n-1}\right), n=1,2, \cdots$
converge to this solution

Example

Find the positive solution of $e^{\wedge} x-2 x-1=0$

- By bisection method
- Find a and b points such that $f(a) f(b)<0-[1,2]$
- Can you arrange a Matlab m-file to solve this equation with tolerance, e.g., 10e-6?
- By function iteration method
- Can you determine whether all or some of these formulas are ok using function iteration method? Create your m-file to try!
(a) $x=\frac{e^{x}-1}{2}$
(b) $x=e^{x}-x-1$
(c) $x=\ln (2 x+1)$

