SE Course: Numerical Methods

MM3: Iterative Solution of Equations

1 kl.8:15-9:00, Review of MM2 and Some Examples

- What we talked in MM2;
- Examples of using Taylor expansions;
- Matlab implementations.

2 kl.9:10-10:40, Exercises for MM2

Question One:

Regarding to the function $f(x)=\cos (x)$,

- Derive the Taylor expansion of it up to 5 th order at the point $x=0$;
- Use the above polynomial to approximate $\cos (-0.2)$ and
- Evaluate the approximation error using Taylor's Theorem.

Question Two:

(Exercise 3.2.2 and 3.2.2, page 60) Function $\ln (1+x)$ can be approximated by a power series as

$$
\begin{equation*}
\ln (1+x)=-\sum_{k=0}^{\infty} \frac{(-1)^{k+1} x^{k+1}}{k+1}=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4} \cdots \tag{1}
\end{equation*}
$$

- Write a Matlab m-file to approximate $\ln (1.25)$ using the first 6 terms of equation (1);
- How many terms of the series (1) are needed to approximate $\ln (1.25)$ with error smaller than 10^{-6} ?
- Use Matlab's built-in function $\log ()$ to verify that the error of the above second analysis is indeed within the tolerance.
Question Three:
The function $\operatorname{erf}(x)$ is defined as

$$
\begin{equation*}
\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t \tag{2}
\end{equation*}
$$

This function is often used in the probabilistic analysis of normalized stochastic variable.

- Derive the series approximation of function e^{x} up to 9 th order at point $x=0$;
- Use the series approximation obtained in last step to approximate $e^{t^{2}}$ and thereby prove that the series approximation of function erf looks like

$$
\begin{equation*}
\widehat{e r f}(x)=\frac{2}{\sqrt{\pi}} \sum_{k=0}^{9} \frac{(-1)^{k} x^{2 k+1}}{(2 k+1) k!} \tag{3}
\end{equation*}
$$

- Write a Matlab m-file to realize the approximation $\widehat{e r f}(x)$ and plot this approximation within interval $[-2,2]$ and $[0,4]$, respectively;
- Use the Matlab's built-in function $\operatorname{erf}()$ and plot the difference (errors)between this function and approximation $\widehat{\operatorname{erf}}(x)$ within interval $[-2,2]$ and $[0,4]$, respectively;
- How to evaluate the approximation errors? Use the Matlab function $\operatorname{norm}(x, p)$ to evaluate the L_{1}-norm, L_{2}-norm and L_{∞}-norm of the errors within interval $[-2,2]$ and $[0,4]$, respectively.

3 kl.10:50-11:30, Iterative solution of equations

- Reading material: Subsection 2.1, 2.2, 2.3 in Textbook.

