SE Course: Numerical Methods

http://www.cs.aaue.dk/~yang/course/NMbasis/NM2010.htm
AUE DE2, Spring 2010, Zhenyu Yang, H332, Tel: 7912 7608, Email: yang@cs.aaue.dk

MM4: Newton's Iterative Method

1 kl.8:15-9:00, Review of MM3 and Some Examples

- What we talked in MM3;
- Examples of iterative solutions of equations;
- Matlab implementations.

2 kl.9:10-10:40, Exercises for MM3

Question One:

Consider the equation

$$
\begin{equation*}
3 x^{3}-5 x^{2}-4 x+4=0 \tag{1}
\end{equation*}
$$

- Show that this equation has a root in the interval $[0,1]$;
- Use the bisection method to obtain an interval of the length less than $1 / 8$ containing this solution;
- How many iterations would be needed to obtain this solution with an error smaller than 10^{-6} ? Write your m-file.
- By using the function iteration method, two rearrangements of equation (1) are carried out as

$$
\begin{align*}
& (i) x=5 / 3+4 /(3 x)-4 /\left(3 x^{2}\right) \\
& \text { (ii) } x=1+\frac{3 x^{3}-5 x^{2}}{4} \tag{2}
\end{align*}
$$

Define your own functions of (i) and (ii) using Matlab m-files and calculate the first 10 iterations for each rearrangement starting with $x_{0}=0.7$;

- Which of the above iterations will converge to a solution near 0.7?
- Find this solution using a tolerance of 10^{-6}.

Question Two:

Consider the equation

$$
\begin{equation*}
\exp (x)-100 x^{2}=0 \tag{3}
\end{equation*}
$$

- This equation has exactly 3 solutions, obtain the intervals of the length less than 0.1 containing them using bisection method;
- By using the function iteration method, three rearrangements of equation (1) are carried out as

$$
\begin{align*}
& (i) x=\frac{\exp (x / 2)}{10} \\
& (i i) x=2(\ln x+\ln 10) \tag{4}\\
& (i i i) x=\frac{-\exp (x / 2)}{10}
\end{align*}
$$

Verify that they are all rearrangements of (4);

- Determine which rearrangement will converge to which solution;
- Use these iterations to locate the solutions with tolerance of 10^{-6}.

3 kl.10:50-11:30, Newton's Method

- Reading material: Subsection 2.4 in Textbook.

