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ContentsContents
Digital filtering 

Synthesis of FIR, IIR filters
Filter property analsis (frequency analysis)
Realization/implementations 

Spectral analysis
Discrete Fourier transformation(DFT) 
Fast Fourier Transform (FFT) algorithms
Effects of Windows, zeropadding, resolution
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Motivation Examples

Filtering wanted signal
Matlab demo: signal processing – filtering...

Digital feedback control
Robust control of a mechanic system

Noise cancellation 
Active Noise Control (ANC)
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SSB Modulation: Principle
Frequency-discrimination method

Step 1: generate a DSB-SC wave
Step 2: get a bandpass filter – one sideband pass 

Product 
Modulation

Carrier Accos(2πfct)

Bandpass 
filter

Baseband
Signal m(t)

DSB-SC 
Wave s’(t) SSB 

Wave s(t)
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SSB Modulation: Spectrum
Precondition: 

message signal should have an 
energy gap centered at the origin

2/5/2008 Signal Processing 6

DSB-SC Modulation:
Coherent Detection (I)

v(t)=1/2AcAc’cos(4πfct+φ)m(t)+1/2AcAc’cosφm(t)

vo(t)=1/2AcAc’cosφm(t)

Product 
Modulation

Lowpass
filter

Local
oscillator

Ac’cos(2πfct+φ)

s(t)
v(t)

vo(t)
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M(f)

W-W

M(0)

S(f)1/4AcAc’M(0)

2fc-2fc

DSB-SC Modulation:
Coherent Detection (II)

1/2AcAc’M(0) cosφ

•Quadrature null effect
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Part OnePart One. . Digital Filter DesignDigital Filter Design

http://www.cs.aaue.auc.dk/~yang/course/filter08.html
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Contents (1)Contents (1)
MM1: Introduction to digital filter techniques

Brief review of discrete-time processes and systems
Frequency response for LTI systems
Filter design problem and examples

MM2: Synthesis of IIR discrete-time filters
Synthesis of continuous-time filters
Impulse-invariance method
Bilinear transformation method

MM3: Algebraic transformation of Low-pass
IIR filters and Linear phase systems
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Contents (2)Contents (2)
MM4: Synthesis of FIR by windowing

Window methods 
Frequency response (Pole-Zero Diagram)

MM5: Implementation of digital filters
Block diagram and signal flow graph
Structures of IIR and FIR systems
Round-off noise in digital filters

Next Step: Spectral analysis
DFT, FFT….
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M1. M1. Introduction to Digital Filter Techniques
(Reading: p.16-40 and 240-270)

Objectives: 
Brief review of discrete-time processes and 

systems (DE4)
Frequency response for LTI systems
Filter design problem and examples
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SignalsSignals

A signal can be mathematically modeled as a 
function, like 

U(•): T → R,  i.e.,  U(t)=ri

Discrete-time signals are defined at discrete times 
and  represented as sequences of numbers. 

e.g., r[1],r[2],r[3],….
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Signal Processing SystemsSignal Processing Systems

Signal processing concerns with representation, 
transform and manipulation of signals and the 
information they contain

Discrete-time systems are those for which both the 
input and output are discrete-time signals, 

e.g., y[n]=T{x[n]}
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LinearLinear and and TimeTime--InvarianceInvariance

The system is linear system if and only if

T{ a x1[n]+b x2[n] } = a y1[n] + b y2[n]

A time-invariant system (shift-invariant) is a 
system that a time shift or delay of the input causes 
a corresponding shift in the output sequence, i.e., 

T{}: x[n] → y[n],   ⇒
T{}: x[n-nd] → y[n-nd], for any nd
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LinearLinear--TimeTime--Invariant SystemsInvariant Systems
LTI system: y[n]=Σk=-∞

∞x[k] h[nh[n--k]k]
Cascade connection h[n]=h1[n]*h2[n]=h2[n]*h1[n]
Parallel connection h[n]=h1[n]+h2[n] 

A LTI system is (BIBO) stable if and only if the impulse 
response is absolutely summable, i.e., 

S=Σk=-∞
∞ |h[k]| < ∞

A LTI system is causal if and only if
h[n]=0,   n< 0

FIR: Finite-duration impulse response systems
IIR: Infinite-duration impulse response systems
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Practical desires in frequency domain: Practical desires in frequency domain: Example2.19Example2.19

Ideal lowpass filter

Ideal highpass filter

Ideal bandstop filter

Ideal bandpass filter
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FFourier Transform for Discrete Systemsourier Transform for Discrete Systems

The frequency response H(ejω)  of the LTI system 
is the Fourier transform of impulse response h[n]:  

H(ejω) = |H(ejω)| e<H(ejω)
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FrequencyFrequency--Domain RepresentationDomain Representation

The system input and output have 
Y(ejω)= H(ejω) X(ejω), i.e.,

Magnitude relation: 
|Y(ejω)|  = |H(ejω)| |X(ejω)|

Phase relation:       
<Y(ejω) = <H(ejω) + <X(ejω)

Magnitude and phase distortions
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Linear Phase and Group DelayLinear Phase and Group Delay
H(ejω) = |H(ejω)| e<H(ejω)

The LTI system is linear phase system if
<H(ejω)=aω, where a is a real constant; 

The system is generalized linear phase system if
<H(ejω)=aω+b, where a,b are real constants 

The group delay of a LTI system is defined as
)]}({arg[)]([)( ωω

ω
ωτ jj eH

d
deHgrd −==
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Example 5.1 Effects of Group Delay Example 5.1 Effects of Group Delay (p.244)(p.244)

The filter has considerable attenuation 
at ω=0.85π. The group delay at ω=0.25π
is about 200 steps, while at ω=0.5π, the 
group delay is about 50 steps
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Frequency ResponseFrequency Response––log Magnitudelog Magnitude
From the pole-zero form, there is 

Log magnitude of H(ejω) is 20log10| H(ejω) |

The gain in dB (decibels): 
Gain in dB = 20log10| H(ejω) |
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Frequency ResponseFrequency Response –– PhasePhase andand GRDGRD
The phase response has the form

The principal phase of H(ejω) is 
-π<ARG[H(ejω) ]≤π

The corresponding group delay is 
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Frequency Response of a Single FactorFrequency Response of a Single Factor
A single factor (1-rejθe-jω) can 
represent a pole factor (1-dkz-1)
or a zero factor (1-ckz-1) 
Log magnitude in dB is
10log10[1+r2-2rcos(ω- θ)]

The principal phase is 

The group delay is 
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Geometric Explanation of a Single Zero Geometric Explanation of a Single Zero 
Consider the first-order system

H(z)= (1-rejθz-1)=(z-rejθ)/z,   r<1

This system has a pole at z=0
and a zero at z= rejθ

The magnitude is 
|H(ejω)|=| ejω -rejθ|/| ejω|=|v3|/|v1|

The phase is
<H(ejω)= <(v3)-<(v1)=φ3- ω
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SecondSecond--Order IIR and FIR ExamplesOrder IIR and FIR Examples
Example5.8 Second order IIR system

System function

Description by difference equation…
Pole-zero plot…
Impulse response h[n]…
Log magnitude …
Phase …
Group delay …
Geometric explanation…
Example5.9 a FIR system…
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Exercise One

See the opgave on the distributed paper;

Run program IIR.m, which can be download


