Reading material: p.160-163, 439 — 458 and 824-829

MM2: Synthesis of IR DT filters
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Explanation of Exercise One

il

1. Explanation of last exercise
2. Continuous time filters
3. Impulse-invariance method
4. Bilinear transformation method
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Effeét of Filtéring

m System frequency response:
H(eio) = H(el)] e<Hcio)

m Input and output relationship
[Y(el®)] =[H(el®)] [X(el)|
QY (el®) = qH(el®) + <aX(el®)
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Requireménts for Fri-’lter Ijésign

m Frequency-selective filters
Lowpass, highpass, bandpass, bandstop filters...
m Linear Phase filters

Causal filters

m Stable filters
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Frequency-Selective Filters
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{a) Specifications for effective frequency response of overall system

in Figure 7.1 for the case of a lowpass filter. (b) Corresponding specifications for
the discrete-time system in Figure 7.1.
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3. Design a lowpass DT filter using thd

4. Design a lowpass DT filter using thq
exercise.

Exercise MM?2

impulse-invariance method|

maximal flat character in passband;
DC gain: 0 dB

Gain at 750Hz: minimum -1.0dB
Gain at 1500Hz: maximum -10.0dB
Sampling frequency: 8000Hz

| such that

bilinear transformation,

which 1
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Synthesis of Discrete-Time IIR Filters
from Continuous-Time Filters
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Discrete-time domain... Continuous-time domain...
Sequences, Z-transform, Fourier Tran... = fynctions, Laplace-transform, Fourier ...

trago rm

DT specifications CT specifications

CT Design ’)
"
DT Filter : CT Filter
H(2), h[n] N H.(s), h(t)
(Butterworth, inv. tgans. (Butterworth,
Chebyshev, a Chebyshev,
Elliptic) Elliptic)
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Synthesis of Continuous-Time Filters

Analog Filter
> See page 824-829
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ButtenNorth Lowpass Fllters (I)

m Characteristics

The magnitude response is maximally flat in the
passhand

The magnitude response is monotonic in the passband
and stopband

m Magnitude-squared function

] 1
H(jQP=——
HOH(Cj)=— >
e = o jay™
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Butterworth Lowpass Fllters (I I)

m Filter Construction
System function

H ($)H (=) =

1
1+(jQ/ jQ )™
Roots of denominator polynomial see Fig.8.3 (p.826)

Stable and causal system H_(S)

Select the poles on the left-half-plane of the s-plane
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H (s)H.(-s) =

1
1+(jQ/ jo, )™

Figure B.2  Depandence of Butterworth
magnitude characteristics on the
order V.,

Chebyshev Filters (1)

m  Motivation: to distribute the accuracy of the approximation

over the passband or the stopband, leading to a lower order filter

m Characteristics

Type | Chebyshev filter: the magnitude response is equiripple in the
passband and monotonic in the stopband

Type Il Chebyshev filter: the magnitude response is monotonic in the
passband and equiripple in the stopband

o m  Magnitude-squared function of type |
/ ’X’f”%xi\. h 60 [H.(jQ) f= L V, (x) =cos(N cos™ x)
/ /N ° 1+ QI0) "
_ AN
’: T Where V() is the Nth-order Chebyshev polynomial, which can be recurrently
‘\\ / calculated by
X X
T VN+1(X) = 2XVN (X) _VN—l(X) .
| continue..
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Design parameters

Chebyshev Filters (11)

€ can be specified by the allowable passband ripple

Q. can be specified by the desired

cutoff frequency

N can be chosen that the stopband specification are met

Location of poles: on an ellipse
Length of the minor axis — 2a€2,
Length of the major axis — 2bQ,

a:l—(a“N -«
2

bzl—(a“N+a
2

a = & '+ 1+ ¢ ¢

Type Il chebyshev filters
1

IH(jQ) =

71/N)

71/N)

1+ [V, (Q . 1Q)]!
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Figure B.5  Locaiion of pases
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| EI:I“inptic Filters

m Characteristics: equiripple in the passband and stopband
m Elliptic filters is the best that can be achieved for a given filter

order N, in the sense that for a given Q, 5,,5,, the transition
band (€2~ €2,) is as small as possible

m  Magnitude-squared function

1 U\ () is a Jacobian elliptic function

|H(IQ) = ———5—
1+£U,5(Q)

HFEAviex]
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DT specifications " CT specifications Synthesis of Discrete-Time IR Filters
CT Design ‘\l using Impulse Invariance Method
DT Filter CT Filter =
H(z), hin] N H(s), he(t)
(Butterworth, inv. fans. (Butterworth,
Chebyshev, - Chebyshev, | | | |
Ellipti Ellipti R
PHo) PHo) » c/D [ DT Filter [ biC "
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Impulse Invariance Metho Practical Procedure
m Fundamental formula: m Stepl: Transform DT specification to CT specification
h[n]=T,h, (nT,), 'Y
e ‘ Q=o/T,
m Frequency property:
_ » m Step2: Design a CT filter based on CT specification
H(e'”)=H. () lol7
Td
m DT specification > CT specification: Q=w/T, m Step3: Transform H(s) to be H(z)
N A N A
m Pole relationship: (p.445) (stable CT filter >stable DT HC(S)‘ES_SK = H(Z)—él_es@z—l
filter) _ASKT
Zk — e k'd
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DT IIR Fllter by Impulse Invarlance

Example: Impulse Invariance Design (p.446)

Desire a lowpass DT filter with .5 ——

— - Q=0/T, — - 0.89125 <|H (e'”) <1, 0<|w|<0.27
DT specifications CT specifications |H(e")[£017783, 03z <lol<z
CT Design m  Select T,=1, CT specification _
0.89125 <|H,(jQ)[<1, 0<|Ql<0.27 T e -
DT Filter CT Filter g o.LmEs, Osr 0k J——
(Bftemﬁ rth, (Bfter""ﬁrth’ m CT butterwoth filter - nfeam
2] N\
Chebyshev, '} i) = H O ) lo |57z Chebyshev, 0.89125 <|H (j0.27)| |H(j0.37)<0.17783 dN
E”lptlc) E“Iptlc) 1 Passband ||<'|||-|\I|un Stoy i
IH.(JQ) P= k
1+(Q/Q,) 1, \\ -
A . m Sixth-order H(s) "
_ k A (b}
H c (S) - kZ:l s—5 = H (Z) z _ Sde z -1 | Matlab aUtO-deS|gn . Figure 7.2 (a) Spe 15 for effective frequency response of overall system
= k 1 in Figure 7.1 for the a lowpass filter. (b) Corresponding specifications for
the discrete-time system in Figure 7.1.
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Remarks about Impulse Invariance
The basis for this method is to choose a DT impulse
response that is similar to the CT impulse response
h[n]=T,h.(nT,),
The CT and DT frequencies have linear relationship,

except for aliasing, the shape Is preserved
H(e'”)=H (J—) lo <7

This method is appropriate only for bandlimited
filters

H.(j€2)=0, o T4<| Q)

Synthesis of Discrete-Time IIR Filters
using Bilinear Method
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Bilinear Transform

m Fundemantal formula

e =

Characteristics of Bilinear Transform

An algebraic transformation between s-plane and z-
plane, i.e., mapping the jQ-axis in s-plane to one
revolution of the unit circle in the z-plane

the CT and DT frequencies have nonlinear

relationship
Q= itan(ﬁ) @ = 2 arctan( Q—Td)
T, 2 2
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2 1-z71 2 1-z71
= —(—), H =H (—
s T, (1+ Z,1) (2) C(Td (1+ Z,1))

1+(T,/2)s 1+(T,/2)s

UL O Bl [ UL )
1-(T,/2)s 1-(T,/2)s
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i0 s-plane i planc _ 2 1-z7"
. J Image ol T ﬁ(l + Z_l)

s = f£} (unit circle)

j 1+, /2)s

He - 1_ (Td /2)5

~
Image of

r &
| .

left hall-plane
Figure 7.6 Mapping of the s-plana
onto the z-plane using the bilinear
transformation.

w

=2 arctan ( s ‘f]
/

' - 0
_{”/_ ______ Figure 7.7 Mapping of the

- cpntimmus—tfme frequency axis onto the
discrete-time frequency axis by bilinear
fransformation.
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DT IIR Filter Design by Bilinear Transform

2 w
Q = —tan( —
( 2)

Td
DT specifications CT specifications
CT Design
DT Filter CT Filter
(Butterworth, (Butterworth,
Chebyshev, B QT, Chebyshev,
Elliptic) @ = 2arctan( =) Elliptic)
2 1-z71 2 1-z7
s=—(——), H(z)=H,(=—(CF—
T, (1“,1) (2) (Td (1+Z,1))
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Pl Figure 7.8 Frequency warping
:L\ } inherent in the bilinear transtormation of
X a_continuous—!ime lowpass filter into a
v discrete-time lowpass filter. To achieve
\\; the desired discrete-time cutoff
ST i frequencies, the continuous-time cutoff
5 ! b | frequencies must be prewarped as
By e 4] o indicated.
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Remarks abo'ut Blllnear M;éthdd

m Sampling period T, will not affect the design,

therefore, in specific problems it can be chosen as any
convenient value

m Stable CT filter »>stable DT filter
m Avoid the aliasing problem

m the CT and DT frequencies have nonlinear

relationship
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Figure 7.9 llustration of the effect of the bilinear transformation on a linear phase
characteristic. (Dashed ling is linear phase and solid line is phase resulting from
hilinear transformation.)
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Examples of bilinear transform design
(see p.454-465)
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