PE Course: Signal Processing

http://www.cs.aaue.dk/~yang/course/filter08.html
DE6-2008, Zhenyu Yang, Room H-233, Tel: 7912 7608, Email: yang@cs.aaue.dk

Exercise Solution for MM1

2. Determine the types (IIR or FIR) of following systems and explain the reason.

- $h[n]=u[n]-u[n-3]$ - FIR system
- $h[n]=\left\{\begin{array}{ll}\ln (n+1) & \text { for } n \geq 0 \\ 0 & \text { for } n<0\end{array}\right.$ - IIR system
- $H(z)=1+z^{2}-z^{-4}$ - FIR system
- $H\left(e^{j \omega}\right)=\frac{1}{1-2 e^{-j \omega}}$ - IIR system

3. Consider the following analog circuit, where resistance $R=1 k \Omega$ and capacitor $C=1 \mu F$.

- Calculate the impulse response function $h(t)$ of above system by regarding voltage $V_{i n}$ as the input and $V_{\text {out }}$ as the output.
$h(t)=\frac{1}{R C} \exp \left(-\frac{t}{R C}\right)=10^{3} \exp \left(-10^{3} t\right)$
- Calculate an impulse response sequence $h[n]$ by following the formula: $h[n]=T_{d} h\left(n T_{d}\right)$, where $h(t)$ is the obtained function in the above exercise and $T_{d}=1 / 8000$.
$h[n]=T_{d} h\left(n T_{d}\right)=1 / 8000 * 10^{3} \exp \left(-10^{3} n / 8000\right)=0.125 \exp (-0.125 n)$.
- Obtain the system function $H(z)$ and frequency response $H\left(e^{j \omega}\right)$ of above sequence $h[n]$.

$$
\begin{aligned}
& H(z)=\frac{0.125}{1-e^{-0.125} z^{-1}}=\frac{0.125}{1-0.8825 z^{-1}} \\
& H\left(e^{j \omega}\right)=\frac{0.125}{1-0.8825 e^{-j \omega}}
\end{aligned}
$$

- Is the system $H(z)$ stable? and why?

This filter is stable, because the pole $p=0.8825$ locates within the unit circle.

- Is this analog circuit acting as a low-pass or high-pass filter?

This filter is a lowpass filter.
This can be observed from the bode plot of this system:
Open Matlab, then type
$\gg \operatorname{bode}(\operatorname{tf}([1],[0.0011]))$
\gg grid
\gg title('Bode plot of analog filter $\left.\mathrm{H}(\mathrm{s})=1 /(1+0.001 \mathrm{~s})^{\prime}\right)$
\gg figure
\gg sys $=\operatorname{tf}([0.1250],[1-0.8825], 8000)$
\gg bode(sys)
\gg title('Bode plot of discrete-time filter $\left.\mathrm{H}(\mathrm{z})=0.125 \mathrm{z} /(\mathrm{z}-0.8825)^{\prime}\right)$
\gg grid

Figure 1: Fig. 1 Bode plot of analog filter $\mathrm{H}(\mathrm{s})=1 /(1+0.001 \mathrm{~s})$

Figure 2: Fig. 2 Bode plot of discrete-time filter $\mathrm{H}(\mathrm{z})=0.125 \mathrm{z} /(\mathrm{z}-0.8825)$

