SE Course: Digital Filter Design

Exercise Solution for MM2

1. Calculate the DC-gain and the cutoff frequency of the analog lowpass filter $H(s)=1 /(1+0.001 s)$

DC-gain: $20 \log _{10}(|H(0)|)=20 \log _{10}(1)=0 d B$
Cutoff frequency Ω_{c} :

$$
\begin{array}{ll}
& -3 d B=20 \log _{10}(1 / \sqrt{2})=20 \log _{10}\left(\left|1 /\left(1+j 0.001 \Omega_{c}\right)\right|\right) \\
\Rightarrow & \sqrt{1^{2}+10^{-6} \Omega_{c}^{2}}=\sqrt{2} \\
\Rightarrow & \Omega_{c}=1000 \mathrm{rad} / \mathrm{sec} \text { or } \Omega_{c}=1000 / 2 \pi \approx 159 \mathrm{~Hz}
\end{array}
$$

2. Calculate the DC-gain and the cutoff frequency of the obtained discrete-time lowpass filter $H\left(e^{j \omega}\right)=$ $0.125 /\left(1-0.8825 e^{-j \omega}\right)$

DC-gain: $20 \log _{10}\left(\left|H\left(e^{j 0}\right)\right|\right)=20 \log _{10}(0.125 /(1-0.8825))=0.5372 d B$
Cutoff frequency Ω_{c} :

$$
\begin{array}{ll}
& 0.5372-3 d B=20 \log _{10}\left(\left|H\left(e^{j \omega_{c}}\right)\right|\right)=20 \log _{10}\left(\mid 0.125 /\left(1-0.8825 e^{-j \omega_{c}} \mid\right)\right) \\
\Rightarrow & 0.7532=\left|0.125 e^{j \omega_{c}} /\left(e^{j \omega_{c}}-0.8825\right)\right| \\
\Rightarrow & 0.7532=0.125 / \sqrt{\left(\cos \omega_{c}-0.8825\right)^{2}+\left(\sin \omega_{c}\right)^{2}} \\
\Rightarrow & \omega_{c}=0.125 \mathrm{rad} / \text { sample or } \\
& \omega_{c}=0.125 * 8000 /(2 \pi) \approx 159 \mathrm{~Hz}
\end{array}
$$

3. Design a lowpass DT filter using the impulse-invariance method, such that

- maximal flat character in passband;
- DC gain: 0 dB
- Gain at 750 Hz : minimum -1.0dB
- Gain at 1500 Hz : maximum -10.0 dB
- Sampling frequency: 8000 Hz

Step 1: Obtain the specifications for the wanted DT filter.

- maximal flat character in passband \Rightarrow Butterworth filter
- DC gain: $0 \mathrm{~dB} \Rightarrow\left|H\left(e^{j 0}\right)\right|=1$;
- Gain at $750 \mathrm{~Hz}:$ minimum $-1.0 \mathrm{~dB} \Rightarrow$ the passband frequency $\omega_{p}=2 \pi * 750 / 8000=3 \pi / 16 \mathrm{rad} / \mathrm{sample}$, and the system magnitude at this frequency point is $20 \log _{10} \delta_{1}=-1 d B \Rightarrow \delta_{1}=0.89125$.
- Gain at 1500 Hz : maximum $-10.0 \mathrm{~dB} \Rightarrow$ the stopband frequency is $\omega_{s}=2 \pi * 1500 / 8000=3 \pi / 8 \mathrm{rad} / \mathrm{sample}$, and the system magnitude at this frequency point is $20 \log _{10} \delta_{2}=-10 d B \Rightarrow \delta_{2}=0.31623$.
Step 2: Obtain the specifications for the wanted CT filter.
- Butterworth filter
- DC gain: $0 \mathrm{~dB} \Rightarrow\left|H_{c}(0)\right|=1$;
- Using the transform $\Omega=\omega / T_{d}$:

$$
\begin{array}{ll}
0.89125 \leq\left|H_{c}(j \Omega)\right| \leq 1, & 0 \leq|\Omega| \leq\left(\Omega_{p}=3 \pi / 16 * 8000=1500 \pi\right) \\
0 \leq\left|H_{c}(j \Omega)\right| \leq 0.31623, & \left(\Omega_{s}=3 \pi / 8 * 8000=3000 \pi\right) \leq|\Omega| \leq \pi
\end{array}
$$

Step 3: Design a CT Butterworth filter which satisfies above specifications using $\left|H_{c}(j \Omega)\right|^{2}=\frac{1}{1+\left(\Omega / \Omega_{c}\right)^{2 N}}$. With respect to the monotonic magnitude property of Butterworth filter, there is

$$
\begin{aligned}
& \frac{1}{1+\left(1500 \pi / \Omega_{c}\right)^{2 N}}=0.89125^{2} \\
& \frac{1}{1+\left(3000 \pi / \Omega_{c}\right)^{2 N}}=0.31623^{2}
\end{aligned}
$$

From above equations, we can obtain that $N=2.5792$. Because N should be some integer, we take $N=3$. Then, from the first equation there is $\Omega_{c}=5902.7(1878.9 \pi) \mathrm{rad} / \mathrm{sec}$. From the second equation there is $\Omega_{c}=6534.8(2080.1 \pi) \mathrm{rad} / \mathrm{sec}$. In order to let both requirements for passband and stopband satified, the parameter Ω_{c} should satisfies $5902.7 \leq \Omega_{c} \leq 6534.8$.
In the following, we take $\Omega_{c}=5902.7$ and $N=3$. Then, the 6 poles of the magnitude-squared function $H_{c}(s) H_{c}(-s)=\frac{1}{1+\left(\Omega / \Omega_{c}\right)^{2 N}}$ are uniformly distributed in the angle on a circle of radius $\Omega_{c}=5902.7$. Then, the poles of $H_{c}(s)$ are the three ones in the left half of the s-plane, i.e., $-\Omega_{c},-\Omega_{c} / 2 \pm j \sqrt{3} \Omega_{c} / 2$. Therefore, there is

$$
H_{c}(s)=\frac{K}{\left(s+\Omega_{c}\right)\left(s^{2}+\Omega_{c} s+\Omega_{c}^{2}\right)}
$$

Considering the DC-gain is 0 dB , it means that $K=\Omega_{c}^{3}$.
Step 4: Obtain the DT lowpass filter as

$$
H_{c}(s)=\frac{\Omega_{c}^{3}}{\left(s+\Omega_{c}\right)\left(s^{2}+\Omega_{c} s+\Omega_{c}^{2}\right)}
$$

4. Design a lowpass DT filter using the bilinear transformation, which has the same specifications as above exercise.
see the second part of solutions
5. Begin to be familiar with Filter Design and Analysis Tool in Matlab Open Matlab, then type
\gg fdatool...
