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Introduction: Concept of Dynamic System Simulation

Computers have provided engineers with immense mathematical powers, which can be
used to simulate (or mimic) dynamic systems without the actual physical system. Simulation of
Dynamic Systems has been proven to be immensely useful when it comes to system modeling
and control design. This because it saves the time and money that would otherwise be spent in
prototyping a physical system. Simulink is a software add-on to MATLAB® which is a
mathematical tool developed by The Mathworks, (http://www.mathworks.com) a company based
in Natick, MA. MATLAB is powered by extensive numerical analysis capability. Simulink® is a
tool used to visually program a dynamic system (those governed by Ordinary Differential
equations) and look at results. Any logic circuit, or a control system for a dynamic system can be
built by using standard BUILDING BLOCKS available in Simulink Libraries. Various toolboxes
for different techniques, such as Fuzzy Logic, Neural Networks, DSP, Statistics etc. are available
with Simulink, which enhance the processing power of the tool. The main advantage is the
availability of templates / building blocks, which avoid the necessity of typing code for various
mathematical processes.

Concept of signal and logic flow

In Simulink, data/information from various blocks are sent to another block by lines
connecting the relevant blocks. Signals can be generated and fed into blocks (dynamic / static).
Data can be fed into functions. Data can then be dumped into sinks, which could be virtual
oscilloscopes, displays or could be saved to a file. Data can be connected from one block to
another, can be branched, multiplexed etc. In simulation, data is processed and transferred only
at discrete times, since all computers are discrete systems. Thus, a SIMULATION time step
(otherwise called an INTEGRATION time step) is essential, and the selection of that step is
determined by the fastest dynamics in the simulated system. In the following sections, the
different blocks that are available are explained. Figure 1 shows the overview of the Simulink
libraries available. More toolboxes may be available based on what has been purchased. The
latest version is Simulink 4.0, which is used with MATLAB 6.1 (Release 12.1).
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Figure 1: Simulink Library
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Connecting blocks

To connect blocks, left-click and drag the mouse from the output of one block to the input
of another block. Figure 2 shows the steps involved. Tips for branches and quick connections are

provided at the end of this document.
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Figure 2: Connecting blocks
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Sources and Sinks

The sources library contains the sources of data/signals that one would use in a dynamic
system simulation. One may want to use a constant input, a sinusoidal wave, a step, a repeating
sequence such as a pulse train, a ramp etc. One may want to test disturbance effects, and can use
the random signal generator to simulate noise. The clock may be used to create a time index for
plotting purposes. The ground could be used to connect to any unused port, to avoid warning
messages indicating unconnected ports.

The sinks are blocks where signals are terminated or ultimately used. In most cases, we
would want to store the resulting data in a file, or a matrix of variables. The data could be
displayed or even stored to a file. The STOP block could be used to stop the simulation if the
input to that block (the signal being sunk) is non-zero. Figure 3 shows the available blocks in the
sources and sinks libraries. Unused signals must be terminated, to prevent warnings about
unconnected signals.

ElLibrary: simulink3/5 -0l x|
Fil= Edit “iew Formab Help
o0ooo
1 o0 — -~
e [ZlLibrary: simulink3 o ]
Constant Signal N N )
Generatar File Edit ‘“iew Format Help
Ramp Sine Wave Step l:l I:l @l
/m /\IJWI Scope Floating X Graph
Scope
Repeating Fulse Chirp Signal
Feauenes Generator )
= w1
Ground Clock Digital Clock Display
untitled mat F | simin I” untitled.mat simout
Fram File From
Wiakspace To File To Waodspace
Randem  Uniform Random Band-Limited
Number Mumber White Moise Terminatar - .
Stop Simulation

Figure 3: Sources and Sinks
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Continuous and Discrete Systems

All dynamic systems can be analyzed as continuous or discrete time systems. Simulink
allows you to represent these systems using transfer functions, integration blocks, delay blocks
etc.
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Figure 4: Continuous and Discrete Systems

Figure 4 shows the available dynamic systems blocks. Discrete systems could be
designed in the Z-plane, representing difference equations. Systems could be represented in
State-space forms, which are useful in Modern Control System design.

Figure 5 contains some advanced linear blocks, available in the “Simulink Extras”
library. They contain certain advanced blocks, such as a PID control block, transfer functions
with initial conditions, etc.
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Figure 5: Advanced Linear Systems
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EXAMPLE of a dynamic system: A mass-spring-damper system

The following section contains an example for building a mass-spring-damper system.
The system can be built using two techniques: a state space representation, used in modern
control theory, and one using conventional transfer functions. The mass-spring-damper system is
a second order system, which is commonly encountered in system dynamics. Electrical
Resistance-Inductance-Capacitance (RLC) circuits are also analogous to this example, and can
be modeled as 2™ order systems.

The example is shown in Figure 6. A step input is used as the control input. (It is an open
loop example). The top portion of the block contains the transfer function representation of the
dynamic system. We can observe only the outputs, and cannot monitor the states. Also, initial
conditions cannot be specified. (By using the special transfer function block in the
Simulink\Extras toolbox, initial conditions can be specified). The bottom portion of the Simulink
diagram shows the same 2™ order system in state space representation. The highest derivative
(acceleration in our case) is represented as a function of the input and the other states. This input
is integrated to form the next lower state. Initial conditions for each state can be specified in the
integration block. States can be individually monitored and manipulated.

Consider a mass-spring damper with the following dynamic equation:

m¥+ e+ k. x = f (1)
where
X Output variable
m Mass
c Damping coefficient
k Spring stiffness
f Control force (multiplied by a constant q;)

Equation (1) can be represented in Laplace domain (as a transfer function) as follows:

X(s)_ Koy’ )
F(s) S°+2lw s+’
where
. . c
Damping coefficient £ =
¢ Ping ¢ 24/k-m

o,  Natural frequency o, =\/%

K Steady State gain (or Static sensitivity) K :ki

S

In the state formulation the system is represented in terms of it’s highest derivative:
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From (1) m¥=(f —c¥-kx) — = i(f — -k x) (3)
m

or it can also be written in terms of it’s damping and natural frequency as (with g, =1):

N=Ka? f —2Lw,X- )X (4)

In our example below, with zero initial conditions, both the transfer function and the state
representations provide similar results. In general both diagrams are NOT necessary. The steps
for the state formulation are as follows:

1. Solve the differential equation in question for the highest derivative. If the equation is not
normalized (as in the first of equation 3) the highest derivative may be multiplied by a term.
You can divide all the values by that term as was done in the second part of equation 3. You
should now have your single term with the highest derivative on the left side and the rest of
the terms on the right side of the equation.

2. Draw a summer block. The block should have as many plusses and minuses as there are
terms in the right side of the equation (in equation (3) we have 3 components and two of
them are negative, thus we add 2 minus sings and 1 plus sign to our summer). The output of
the summing block should equal the highest derivative term multiplied by a constant. You
can now multiply or divide the constant out to get the derivative by itself.

3. Add integrators. The total number of integrators should equal the total number of derivatives
that you want to remove. For example, if you have a second order mechanical system (like
the one in equation 3) and you want position, you need to integrate twice. Put a block at the
end for the output variable.

4. After each integrator, feed the signal back to its proper place on the summer. Immediately to
the right of an integrator is a value equal to the integral of the value on the left. Be sure to
use a gain block to multiply any value by its proper constant before feeding the value back.

Notice in the state formulation example that the lower derivatives (or states) are accessible
(Internal Variables). This accessibility makes the state formulation a better methodology for
dynamic systems classes. In addition, it is easier to adapt the system to nonlinear components.
The transfer function methodology is simpler (only one block), but it is limited in is application.
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Figure 6: A mass-spring-damper system — an example of a 2" order dynamic system.

Note that figure 6 does not show the spring and damper forces. This is rectified in figure 7. Note
neither is incorrect, but figure 7 provides the engineer with more useful information. Figure 7 is
the figure that is produced when one uses the first part of equation (3). Figure 6 is produced
when one uses the second part of equation (3).

) sope EEC . laix
JJ@ ”ﬁ@ /@ | ﬁ EI | & _!E File Edit ‘iew Simulstion Format Tools Help
D|D”ﬂ§|%%ﬁlf>@\ﬁ§®|> lINormaI 'I
..... Vel 1 Disp. %
=
..... Integratort Scope
Damping Force
Spring Farce \J-
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Figure 7: A mass-spring-damper system showing the spring and the damper forces.
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Non-linear operators

A main advantage of using tools such as Simulink is the ability to simulate non-linear
systems and arrive at results without having to solve analytically. It is virtually impossible to
arrive at an analytical solution for a system having non-linearities such as saturation, signum
function, limited slew rates etc. In simulation, systems are analyzed by numerical differentiation
thus non-linearities are not a hindrance. Figure 8 shows some of the non-linear components that
can be incorporated into a simulation. One such could be a saturation block, to indicate a
physical limitation on a parameter, such as a voltage signal to a motor etc. Manual switches are
useful when trying simulations with different cases. Switches are the logical equivalent of IF-
THEN statements in programming. Slew rates using the rate limiter could control the rate of
change of a physical parameter, such as the speed of a DC motor, etc.

[=]Library: simulink3/Nonli -0 x|
File Edit Wiew Formab Help
3 2 _rr' '_,_rb
Rate Limiter Saturation Quantizer
ﬁ X . 4% 1
Badklash Dead Zone Relay
_|
N >_Q\n_> ::‘“~—>
S_.'t h - —
ite i
Manual Switch bultiport
Siitch
7
Coulomb &
Wizcous Friction

Figure 8: Non-linearities

EXAMPLE:

Here is an example using a non-linear block. Consider a sine wave of amplitude 1 (signal
varies between +1 and —1). A saturation block is used to limit the output to an amplitude of 0.5
and the saturated and unsaturated (original) signals are compared. The example is shown in
Figure 9. The saturated and unsaturated signals are clearly seen.
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Figure 9: Example of a non-linear function (saturation)

EXAMPLE of a dynamic system: A mass-spring-damper system with Coulomb Friction

A mass-spring-damper system is created with Coulomb friction for the damper force.
The Coulomb friction (from the non-linear library block) is represented as an offset at zero
velocity. The offset for our example is given as 0.5 (with a slope of 1). The coding is shown in
Figure 10. The output for a combination input = ramp(2t) + step + ramp (5t) is shown in Figure
11. The combination input is available as the repeating sequence in the sources library block. As
expected, the Coulomb Friction creates undesired response in the output of the system.

E!sim_tut_testz i

File Edit Wiew Simulation Formatb Tools  Help

=10l x|

Dl@ﬂ§|$ﬂ|ﬂleﬁﬁ}®|b IINormaI VI

MMM =
u [/’
Repeating uw/m
Sequence
Coulomb -
Friction with an
offset of 0.5

Ready

Coulomb & 2_zeta_Win1
Wiseous Friction

x
CYES
3

Integratord

simout

To Wiodspace

100%:

|odes

Figure 10: Mass-Spring-Damper system with Coulomb friction
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Mass-Spring-Damper System with a combination input and coulumb friction

— Input | :
=== With Coulomb friction it
PR --=+ Without Coulomb friction [y ... 7 SRRRREELE pommemee 7]

________________________________________________

a 1000 2000 3000 4000 5000 G000 7000
tirne (s)

Figure 11: Output of mass-spring-damper system with coulomb friction
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Using functions (written as M, C, etc..)

Functions written in M or in any other language such as C or Fortran could be used in
conjunction with Simulink to enhance the computing power of Simulink. Custom code, if
included, written as an ‘M’ or ‘C’ file, are evaluated at every simulation step. S-functions are
Dynamic Linked Libraries (DLL) written in another language such as C, and then compiled
using the MATLAB compiler ‘MEX’. This is useful in large simulations, since a function written
in ‘C” runs much faster than a comparably programmed M-function. Also, for REAL-TIME
simulations, only S-functions can be used, the reason again being high speed of processing.

E!Lihrary: simulink3/Functions & -|O] x|
File Edit View Format Help
Ilf/_ n-C Tiu)
—  F % ; E %
LookUp Lock-Up Look-Up
Table Table (2-0 Tahla (n-0
u n-0r Tidet) n-0 T[]
K] L™
=2 e
FreLook-Up Interpalation (n-C0 Crirect Look-Up
Index Search using PreLook-Up Table (n-I
MATLAB
fu) Function i system
Fcn MATLAB Fen S-Function
Fiu)
2m
OF)= 5 et
Folynamial
S-Function Builder

Figure 12: Functions and tables

Look-up tables are very useful in mapping different data points and functions. N-
dimensional look-up tables are available. Figure 12 shows the various functions and tables used
in Simulink.

EXAMPLE:

Look-up tables are used for producing outputs based on a pattern of inputs. If the pattern
is known, then the data could be entered in a Look-up table, and linear interpolation is performed
to produce the outputs based on the new set of inputs. Consider the simple example where you
want to multiply 2 inputs and get the output. A 2-D look-up table is created in Simulink, and the
values for 1, 2 and 3 as inputs are entered in the output block, as seen in Figure 13. The block is
used to multiply 2 inputs, and the output is shown as follows (2 * 2.5 = 5):
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Figure 13: 2-D Look-up table example

The visualization of the 2-D look-up table is shown in Figure 14. Any 2-D surface can be
represented as a look-up table if data exists for specific points on the inputs. 1-D and n-D look-
up tables are also available in Simulink.

Look up table example

Figure 14: Visualization of the 2-D look-up table
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EXAMPLE:

To show a more complete use of the look up table, let us consider a non-linear spring with the
spring force defined as, f =10°x + 3x10"x? attached to a mass that weighs 100 Ibf.

S

Z Nonlinear
damper I_;_:I Spring

S
Figure 15: Mass-Spring-Damper System

600

400

200

0 0.03 0.06
time

Figure 16: Variation of external force with time.

As an initial condition let us assume that there is an initial deflection of 0.001 inches due to an
internal force of 400 pounds. The time variation of the external force is shown in the figure 16.
The equation of the exact (nonlinearized) model is given by:
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2
M%:—(105x+3x10“x3)—8%+F 5)
To compare the nonlinearized model with the linearized one, let us linearize the spring force by

Taylor series at F = 400 and x=0.001 inch. The linearized equation for the force is given by

f ~600—-10°x. Thus the linearized equation for the system is:
Md—z)(——(106x—600)—8%+F (6)
dt? dt

Here, the damper constant B is assumed to be 1001bf/(inch/sec).
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Figure 17: Simulink block diagram with linearized and nonlinearized spring system

Figure 17 is the Simulink block diagram used to solve both the equations in one run. The
external force F is created by using the look up table. This force can also be created by using 3
step functions, a constant and a summer.

As always the Simulink model is started by the highest order derivative. Further integration of
this derivative gives the velocity and the displacement parameter. So for convenience, arrange
the differential equation such that the highest order derivative (2" in our case) is the only term
on the left hand side of the equation. Then start drawing the block diagram using the velocity and
position vectors according to the given equation.
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Remember that we have a system with an initial deflection of 0.001 inch. So double click the
integrator, whose output is the position vector and insert the value of 0.001 as the initial
condition. Similarly, make sure that the initial condition of the integrator with the output as the
velocity is zero for the present case.

The Scope block (see figure 3) is used to see the plots of the position vector x. We can use any
number of these scopes to see the variation of any parameter. But to print the graphs it is a better
idea to save the values using the to Workspace block (see figure 3) and plot it later in the
command window. In the current case the values of the displacement vector are saved in the
workspace with the variable name of ‘out’ and ‘outl’ for nonlinearized and linearized spring
respectively.

e Bearing Vibration
14 T T I

: : —— Non-Linearized
——- Linearized

Displacement, Inches

i i I \
0 0.02 0.04 0.06 0.08 0.1 0.12

Time, Seconds

Figure 18: Figure showing the variation of displacement with time for linearized and
nonlinearized spring system.

Mathematical operations

Mathematical operators such as products, sum, logical operations such as AND, OR, etc.
can be programmed along with the signal flow. Matrix multiplication becomes easy with the
matrix gain block. Trigonometric functions such as sin or tan inverse (atan) are also available.

Relational operators such as ‘equal to’, ‘greater than’ etc. can also be used in logic
circuits. Figure 19 depicts the available mathematical tools in Simulink 4.0.
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[FlLibrary: simulink3/Math -0l x|
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Figure 19: Mathematical tools
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Signals & Data Transfer

In complicated block diagrams, there may arise the need to transfer data from one portion
to another portion of the block. They may be in different subsystems. That signal could be
dumped into a GOTO block, which is used to send signals from one subsystem to another.
Multiplexing helps us remove clutter due to excessive connectors, and makes matrix
(column/row) visualization easier.

E!Lihrar'r: simulink3/Signals & Systems - |E||5|
File Edt Wew Format Help

O |

Bus Bus Pz Demux
Creator  Selector

Horiz Cat
b Ty M
- erge
—a Uz > Y(E)
Selector Assignment hil atriz: Merge
Concatenation
From Goto Tag Goto
Wizibility
A E A A
Data Store Data Store Data Store
Fead demony Write
auto
Ui:ap
[0} &
Function-Call Reshape [ata Type Conwersion
Generator
Hit I nridth
Crossing
bodel Info . 0, Te:[0 0], C:0, D0
Signal Specification
Frobe

Figure 20: Signals and data transfer

Revised 4/25/03 21



Simulink Tutorial © 2003 — OSU-ME

Optimizing Visual appeal

Many times, when a complex Simulink diagram is built, the number of connectors and
blocks on a particular level may prevent proper comprehension of the flow of logic. In such

cases, one can create a hierarchical flow of blocks using subsystems, which help keep the block
diagram simple and comprehendible.

Use of subsystems and masks

Masks are interfaces between the functionality of a subsystem and the user. For example,
if there exists an algorithm that the programmer would like to hide from the user, or will be too

confusing for the user, the programmer uses a mask and hides the algorithm after placing it in a
subsystem.

EjLihrary: simulink3/Subsystems - | Ellﬂ
File Edit “iew Format Help
Int Ot In1 Out1 Master
Atomic Subsystem Subsystemn Configurable
Subsystemn
F I n L3
In1 Ourt 1 Ini Outl Ini Outl
Triggered Enabled Enabled and
Subsystem Subsystemn Triggered Subsystemn
functi
unictioni) n1
Ini Ot Int forf{..1 Outl while { ...} gyt
IC
Function-Call For ltaratar Wihile [teratar
Subsystam Subsystem Subsystemn
ifful > 07 caze [1]:
ul ul
elze default:
It Smitch Case
if {1 case: {}
In1 Out1 In1 Ongt 1
If Auction Switch Case Action
Subsystem Subsystemn
Subsystem
Examples
Subsystem Examples

Figure 21: Subsystems
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Example: (PID control block in Simulink\Extras)

The “‘Simulink Extras’ block, contains a PID controller. When double-clicked, it asks the
user for the P, I and D gains of the system. The system inside (which can be observed by right-
clicking on the block and clicking on *Look under mask’) is shown in Figure 22.

Suntitled * - 1ol x|
Fil= Edit VYiew Simulation Format Todls
DzE& sma(ax)r = B
Block Parameters: PID Col ]
— PID Controller [mazk] [link]
Enter expressions for proportional, integral, and derivative termns.
P+l/s+Ds
Proportionak
1
Integral:
Pl I.I
PID Contre  Cut Dierivative:
Copy [o
Clear
Look |_IrdE=r I"-'Ial-:. oK. Carcel Help Apply
Go Ta Library Link
Break Library Link
Look under the mask of th[100%% Format ) [odess s
Foreground Color  #
Background Color  #
Elock Parameters
EBlock Properties
=] Link: untitled/PID Col _ ol x|

File Edit Wew Simulation Format Tools

D& sER|22r o R

4%

Proportional

[ Derivative

Fl100%

|odeds

Figure 22: Masking example — PID control block
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The following illustrations in Figure 23 show the components of the mask. There are spaces

provided for typing help messages, sketching figures on the face of the block, accepting variables
and creating prompts, etc.

<) Mask Editor: untitled/Subsystem o ] | <) Mask Editor: untitled/Subsystem =10l x|
lcon | Initializatian Dacumentation | lcan | Initialization Documentation
blazk tupe: | Contraller Mazk type: I Contraller
Frompt Type “arable

| Block description:

<<end of parameter lists> - Thiz black implements the Proportional contraller

Add I Type the gain
Delete I
R
Diyin I K] | [ _’I—I
Prampt: W Control type: m
W ariable: II:'_gain— Agsignment: lm Block help:

I Type the Proportional gaing in the space provided,

FPopup stings:

Initislization commands:

iz | (el it | izl | Arply | QK. | Catcel Unmask Help Apply
L]
Block Parameters: Subsystem k|

— Controller [mazk)

This block implements the Proportional controller

r— Parameters
Type the gain

E]
(] I Catcel | Help | Apply |

Figure 23: Programming the mask
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EXAMPLE: Simplification of the block diagram

In case of complex block diagrams, cluttering of smaller blocks makes the block difficult
to understand. In that case, based on functionality, blocks from the main window can be placed
inside sub-systems and the subsystems make up the main block. Figure 24 shows an example of a
dynamic system with a feedback controller and actuator dynamics. The three functional modules
are now placed in their respective subsystems.
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Figure 24: Simplification using subsystems
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Making Subsystems

The following is the procedure for making subsystems such as the block in Figure 24.

1. Drag a subsystem from the Simulink Library Browser and place it in the parent block

where you would like to hide the code. The type of subsystem depends on the purpose of

the block. In general one will use the standard subsystem but other subsystems can be

chosen. For instance, the subsystem can be a triggered block, which is enabled only
when a trigger signal is received. Figure 25 shows the procedure for creating a subsystem

block.

=101 x|

File Edt Wew Heln

[y = <= Find ||

Subsystem: & subsystem block template containing an inport and outport block.
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Whie irotor Subsystem

[ untitled *
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B [ 4]

DISHE +2R (9 RES ®|F & [Noma =
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Figure 25: Create a subsystem
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Open (double click) the subsystem and create input / output PORTS, which transfer
signals into and out of the subsystem. The input and output ports are created by dragging
them from the Sources and Sinks directories respectively. When ports are created in the
subsystem, they automatically create ports on the external (parent) block. This allows for
connecting the appropriate signals from the parent block to the subsystem. Figure 26
shows the creation of the input / output ports.

E! Simulink Library Browser ] | =101 x|
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In: Provide an input part for a subsystem or model. For Triggered Subs_ustems if "Latch [buffer] input’ p
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parameters can be uged to explicitly specify the input signal attributes.
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3. Once the subsystem is created create blocks or code to be enclosed. This is shown in the
bottom part of Figure 27. These blocks contain the code that would be hidden from the
parent block and they communicate with the parent block using the Input / output
PORTS. Figure 27 shows how the hidden code uses the input output ports to
communicate to the parent block.

I

File Edit Wiew Simulabion Format Tools  Help
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Figure 27: Create hidden code

The subsystem can then be masked if necessary.
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Visual aids

block.

The following visual aids can be used to provide more information about the simulated

Sample time colors
Based on the sampling rate of the system and their individual components, colors are
assigned automatically to systems with different sampling rates.

Signal Type
Based on the type of signal, whether double, Boolean etc., signals ca be labeled, that help

us identify what each signal represents.

VECTOR Wide lines and line WIDTH

The width of lines can be changed based on whether they transmit scalars or vectors.
Wider lines represent vectors. The actual width (no. of multiplexed data signals) can also
labeled next to the lines.

Execution order

Sometimes, it is useful to know the order of execution of the blocks in the Simulink
diagram. This command places a number next to the specific block indicating its order of
execution.

The commands are shown in Figure 28. A sample of the features is displayed in Figure 29.
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O |§ =] §| EE Eont..._ | b = INDlmaI 'l
Text alignment 3
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Storage dlass

Exec
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Figure 28: Setting block display features
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Figure 29: Example of block display options
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Setting simulation parameters

Running a simulation in the computer always requires a numerical technique to solve a
differential equation. The system can be simulated as a continuous system or a discrete system
based on the blocks inside. The simulation start and stop time can be specified. In case of
variable step size, the smallest and largest step size can be specified. A Fixed step size is
recommended and it allows for indexing time to a precise number of points, thus controlling the
size of the data vector. Simulation step size must be decided based on the dynamics of the
system. A thermal process may warrant a step size of a few seconds, but a DC motor in the
system may be quite fast and may require a step size of a few milliseconds.

<} simulation Parameters: untitled
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Figure 30: Simulation settings
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Figure 31: Available numerical methods for solving dynamic equations
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Concept of Hardware in the Loop

Simulink’s REAL TIME WORKSHOP (RTW) provides the ability to link Simulink to
any hardware available, thus providing control capability directly from a high-level
programming language like MATLAB/Simulink. This concept, known as Hardware-in-the-Loop
(HIL) is used extensively in control development. The concept of Real-time control using
hardware in the loop is explained below.

Build dynamic

Simulink

Develop control

system in == cystem in Simulink > |cantrol blocks instead

and Simulate

Include real-time

of Model

Figure 32: Concept of Hardware in the Loop

- FEun experiment and
tune controller

An example is shown below in Figure 33. A first order model is replaced by a Digital to Analog
Converter (DAC) and an Analog to Digital converter (ADC) feeding information from and to the
actual hardware. The DAC signal is sent to an actuator, and the ADC signal is acquired from a
sensor. An example of a Real-time control system is dSPACE, who provide the hardware (data
acquisition and connectivity boards) and the necessary hardware-software interfaces in Simulink.
The interface blocks are available from a dSPACE library in Simulink.
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Tips and Tricks
Here are some useful tips for working with Simulink.

1.

2.

To copy a block, right click and drop the block onto the target Simulink window.

LIBRARIES

To create a template block, save the Simulink block as a library. In the future, you can
copy the block from the library onto any Simulink block where it needs to be used.
Changing the block structure or parameters in the library activates the changes in all the
blocks where they may be used. If you want to break the link of a particular block from
its library source, right-click and say “Break Library Link”.

To create a branch from a signal, right click on the source signal at the point where you
would like to branch to start, and drag it to the target location.

Always connect all open ports in a block diagram, to prevent warnings about
unconnected ports. Ground (in Sources) and terminator (in Sinks) can be used to plug
open ports.

Compatibility with older versions of MATLAB

Simulink files saved in MATLAB 6 (Release 12) / Simulink 4 or MATLAB 6.1 (Release
12.1) / Simulink 4.1 may not be compatible with MATLAB 5.3 (Release 11) / Simulink
3.0 and earlier versions. To provide compatibility, specify the type when saving the
Simulink block, as shown below in Figure 34.

i

Fil= Edit ‘iew Simulation Farmat Tools  Help

D|ﬁﬂ§|%ﬁ|f)fl|ﬁt}®|b llNormaI "I

saveas 21x]
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gui

interackive

models
optimization
saved_vehices

Ready File: namne: untitled. mdl j Save I
1| Save as type: Sirmulink, Modelz = md) | Cancel |
(Sl Models (- _ ] Z

Figure 34: Providing compatibility with earlier versions of Simulink
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Resources

The Mathworks Website (contains online documentation)
http://www.mathworks.com

Control System Analysis using MATLAB
http://rclsgi.eng.ohio-state.edu/matlab

Simulink Tutorial by T. Nuygen
http://www.messiah.edu/acdept/depthome/engineer/Resources/tutorial/matlab/simu.html

MATLAB/Simulink Resources
http://www.eng.fsu.edu/~cockburn/matlab/matlab help.html

Simulink: A graphical tool for dynamic system simulation (by G.D. Buckner, NCSU)
http://www.mae.ncsu.edu/org/asme/webpages/tutoriall.pdf
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