

Classical Control Lecture 1

Outline

Prerequisites

- Block diagram for system modeling
- Modeling
 - Mechanical
 - Electrical

Background Basic Systems Models/Transfers functions

Outline

- Background
- Basic Systems
- Models/Transfers functions
- 2 Control Specifications
 - Closed Loop Stability
 - System Performance
 - Effect of Poles
 - Effect of Additional Poles/Zeros

Background Basic Systems Models/Transfers functions

Goal of Control Engineering

Graham C. Goodwin:

The fundamental goal of CE is to find technically, environmentally, and economically feasible ways of acting on systems to control their outputs to a desired level of performance in the face of uncertainty of the process and in the presence of uncontrollable external disturbances acting on the process.

Background Basic Systems Models/Transfers functions

The Fly-Ball Governor

Historical Periods

- The Industrial Revolution (1860s)
- World War II (1940-1945)
- The Space Race (1960s,1970s)
- Economic Globalization (1980s)

Background Basic Systems Models/Transfers functions

Evolution of Control

- 1940 Classical Control
 - Frequency Domain
 - Mainly useful for SISO systems
 - A fundamental tool for many practicing engineers
- 1960 Modern Control
 - State-space approach to linear control theory
 - Suitable for both SISO and MIMO systems
 - No explicit definition of performance and robustness
- 1970 Optimal Control
 - Minimize a given objective function (fuel, time)
 - Suitable for both open-loop and closed-loop control
- 1980 Robust Control
 - Generalization of classical control ideas into MIMO context
 - Based on operator theory which can be interpreted into frequency domain
- Nonlinear control, Adaptive Control, Hybrid Control

Background Basic Systems Models/Transfers functions

Basic Continuous Control System

Background Basic Systems Models/Transfers functions

Basic Digital Control System

Background Basic Systems Models/Transfers functions

Continuous System Models

Numerator and denominator

• General formula

$$G(s) = \frac{Y(s)}{U(s)} = \frac{b_0 s^m + b_1 s^{m-1} + \dots + b_m}{a_0 s^n + a_1 s^{n-1} + \dots + a_n}$$

• Second order system (special case)

$$G(s) = \frac{K}{s_2 + 2\zeta\omega_n s + \omega_n^2}$$

• Matlab

sys=tf(num,den)

Background Basic Systems Models/Transfers functions

Continuous System Models

Zeros and poles

• General formula

$$G(s) = \frac{Y(s)}{U(s)} = K \frac{\prod_{k=1}^{m} (s - z_k)}{\prod_{i=1}^{n} (s - p_i)}$$

• Second order system (special case)

$$G(s) = \frac{K}{(s-p_1)(s-p_2)} \qquad p_{1,2} = -\zeta \omega_n \pm j \omega_n \sqrt{1-\zeta^2}$$

• Matlab

sys=zpk(z,p,k)

	Closed Loop Stability
Introduction	System Performance
Control Specifications	Effect of Poles
	Effect of Additional Poles/Zeros

Outline

- Background
- Basic Systems
- Models/Transfers functions

2 Control Specifications

- Closed Loop Stability
- System Performance
- Effect of Poles
- Effect of Additional Poles/Zeros

Closed Loop Stability System Performance Effect of Poles Effect of Additional Poles/Zeros

Bounded Input Bounded Output

- Impulse response
- Roots of characteristic equation
- Gain and phase margins
- Nyquist stability criterion

Closed Loop Stability System Performance Effect of Poles Effect of Additional Poles/Zeros

Stability - Impulse Response

Continuous systems

The system is BIBO stable if and only if the impulse response h(t) is absolutely integrable

Discrete systems

The system is BIBO stable if and only if the impulse response h[n] is absolutely summable

Closed Loop Stability System Performance Effect of Poles Effect of Additional Poles/Zeros

Stability - Characteristic Roots

Asymptotic internal stability

Continuous systems

All poles of the system are strictly in the LHP of the s-plane

Discrete systems

All poles of the system are strictly inside the unit circle of the z-plane

Closed Loop Stability System Performance Effect of Poles Effect of Additional Poles/Zeros

Analyzing System Performance

System types

- Continuous system
- Discrete system

Analysis domain

- Time-domain specifications
- Frequency-domain specifications

Different periods

- Dynamic (transient) responses
- Steady-state responses

Closed Loop Stability System Performance Effect of Poles Effect of Additional Poles/Zeros

Continuous Time - Dynamic Response

num1=[1]; den1=[1 2 1]; num2=[1 2]; den2=[1 2 3]; impulse(tf(num1,den1),'b',tf(num2,den2),'r') step(tf(num1,den1),'b',tf(num2,den2),'r')

Closed Loop Stability System Performance Effect of Poles Effect of Additional Poles/Zeros

Continuous Time - Dynamic Response

Step Response

- Overshoot
 (M_p)
- Rise time (t_r)
- Settling time (*t_s*)
- Peak time (t_p)

Closed Loop Stability System Performance Effect of Poles Effect of Additional Poles/Zeros

Natural Frequency and Damping

Closed Loop Stability System Performance Effect of Poles Effect of Additional Poles/Zeros

Poles in the Continuous s-plane

Closed Loop Stability System Performance Effect of Poles Effect of Additional Poles/Zeros

Poles in the Continuous s-plane

Closed Loop Stability System Performance Effect of Poles Effect of Additional Poles/Zeros

Systems with Different Poles

Pole-Zero Map

Closed Loop Stability System Performance Effect of Poles Effect of Additional Poles/Zeros

Step Response of Different Systems

Closed Loop Stability System Performance Effect of Poles Effect of Additional Poles/Zeros

Bode Plot of Different Systems

Closed Loop Stability System Performance Effect of Poles Effect of Additional Poles/Zeros

Systems with Different Zeros

Pole-Zero Map

Closed Loop Stability System Performance Effect of Poles Effect of Additional Poles/Zeros

Step Response of Different Systems

Closed Loop Stability System Performance Effect of Poles Effect of Additional Poles/Zeros

Bode Plot of Different Systems

Closed Loop Stability System Performance Effect of Poles Effect of Additional Poles/Zeros

System with Zero in RHP

Introduction Sys Control Specifications Eff

Closed Loop Stability System Performance Effect of Poles Effect of Additional Poles/Zeros

Step Response

Step Response

Closed Loop Stability System Performance Effect of Poles Effect of Additional Poles/Zeros

Bode Plot of System with RHP

