Stochastic Analysis for Engineers

Lectured by Zhenyu Yang
Fall 2004, Aalborg University Esbjerg
Course Web:http://www.cs.au

e.auc.dk/~yang/course/stoc04.htm
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Textbook

m K. Sam Shanmugan and BArthur M. reipohl:
"Random Signals - Detection, Estimation

and Data Analysis ", John Wiley Sons, Inc.,
1988.
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Objective
m To give students an understanding of the

description of stochastic signals in order to
perform filtering and detection

m To enable students to apply estimation and
detection methods for simple problems in
connection with stationary stochastic processes

[

To give students an understanding of spectral
estimation techniques
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Content

m  Discrete linear models

Autoregressive (AR) processes
Moving average (MA) models
Autoregressive moving average (ARMA) models
m  Signal detection
Hypothesis testing

Decision theory and decision rules
Binary detection

M-ary detection

]

Content (cont’d)

m  Discrete time Wiener filters

Non-causal discrete time Wiener filters
Causal discrete time Wiener filters

m  Discrete time Kalman filters
Kalman filters
Extended Kalman filters

m  Parameter estimation of stochastic processes
Model-free estimation: mean value, autocorrelation, PSD

Model-based estimation for AR, MA, ARMA processes

e (Case studies
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m  Linear minimum mean-square error estimation
Linear minimum mean-square error estimators
Nonlinear minimum mean-square error estimators
Joint Gaussian random variables
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Ten Lecture Topics
Topics Sections in
Shanmugan
Response of linear systems to random 41,42 43
inputs
Discrete lmear stochastic models

Dietection of known signals (Part 1)

Detection of known signals (Part 2)

Mean-square error filtering and estimation,
Wiener filters (Part 1)
Wiener filters (Part 2)

Kaluan filters (Part 1)
Kalman filters (Part 2)

Model-free and speciral estimation (Part 1)

Model-free and spectral estimation (Part 2)
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What have we learned in Sem6?

MM1: Definition and description of stochastic processes

MM2: Special classes of stochastic processes and
stationarity

MM3: Autocorrelation and power spectral density functions
of WSS processes

MM4: Continuity, differentiation, integration, time
averaging and ergodicity

MMS: Response of Linear Systems to Random Signals
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Random Processes

m Let S be the sample space of a random experiment and let
t be a variable that can have values in the set 'cR;, the
real line. A real-valued random process X(t),t eI, is a
measurable function on I'XS that maps I'xS onto R,

m A real-valued random process can be described by its nth
order distribution function like

FX(!,),Xll;).v.v)((l,,)('xl’xZ""'xn) =P[X(#)<x,...X(1,) < x,]

forallmandt,,...,t e’

Method of Description
m  First and second order characteristics
The mean of X(t)
My (1) =E{X (D)}
The autocorrelation of X(t)
Ry (1,,1,) = E{X (1) X (1)}
The autocovariance of X(t)
Cou (1s13) = Ry (1) = 1y (1) (1))

The correlation coefficient of X(t)
Cu (11,1,)

o ) e C o ()
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Matlab Calculations

= randn(m,n) function generates arrays of random numbers
whose elements are normally distributed with mean 0, and
variance 1

m M = mean(A) returns the mean values of the elements
along different dimensions of an array.

m  C = cov(x) where x is a vector returns the variance of the
vector elements.

m  C=xcorr(X,Y) estimates the cross-correlation sequence of a
random process. Autocorrelation is handled as a special
case.

m  C=corrcoef(X) returns a matrix of correlation coefficients
calculated from an input matrix whose rows are
observations and whose columns are variables.
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Strict-Seﬁ.Se Statfdnarity (SSS)

A random process X(t) is called time stationary or
stationary in the strict sense (SSS) if all of the
distribution functions describing the process are
invariant under a time translation, i.e.,

for all t;,ty,... t,t;+T,t,+7, ...,t,+T €I, and all
k=1,2,...,

PX(t,)<xy, X(£)€X5..0, X(1)<X, ]
=P[X(t, +1)<x,, X(t, +T)<Xyp..., X(t, +T)<X,]
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* Wide-Sense Stationarity (WSS)

m A random process X(t) is said to be stationary in
the wide sense (WSS) if its mean is a constant
and the correlation function depends only on the
time difference, i.e.,

E{X(t)}=px=constant,

E{X*()X(t +7)}=Rxx(T)
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Autocorrelation Properties

Ryx(D=E{X()X(t+7)}

m Ry (0)=E{X?(t)}20 - average power

m  Ry(T) is an even function of 7, i.e., Ryyx(T)= Ryx(-T)

m Ry (1) is bounded by Ryx(0) , i.e., IRyx(T)I< Ry (0)

= If X(t) contains a periodic component, then Ry (1) will
also contain a periodic component

m Iflim_, Ry (7)=C, then C= py?

m If Ryy(T )= Ryx(0) for some nonzero T, then Ry (1) is

periodic with a period T,
m  If Ryy(0)<eo, and Ryx(T) is continuous at t=0, then it is

continuous for every T
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Power Specti‘ai Ife;lsify Function

m  For the random WSS random process X(t), the
PSD function is defined as

S (/)= F{Ry (D)} = [~ Ry (2)exp(=j2af7)dt

m  Given the PSD function, the autocorrelation
function can be obtained through the inverse
Fourier transform

Ry (@) =F (S (M) =[ S (Hexp(2ao)df
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Frequency Analysis of Random Signals

How about the spectral properties of the random
processes?

m Direct Fourier transform can not be applied to
random signals

m  The autocorrelation function Rgx(T) contains some
information about the frequency of the random
signals

m Consider real WSS random processes...
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Properties of the PSD Function (cont’d)

= Band-related processes

Lowpass processes... its psd is zero for IfI>B, B-
bandwidth

Bandpass processes... its psd is zero for f-B/2<Ifl<
f+B/2, B-bandwidth, f_— center frequency

m  Power and bandwidth calculations
The power within an interval

Phef) =2 Su(Hdf

Effective bandwidth B, coefficient time T,

2, :%jwsxx(f)df L .[,:RXX (t)dt
max[ S (f)] c Ry (0)
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PSD Function

Properties of the

The PSD function called the spectrum of Random process
X(t), has the properties

m Syx(f) is real and nonnegative
the average power in X(t) is

E{X’ (0} = R (0) =[S (f)df
= If X(t) is real, then Syy(f) is even

If X(t) has periodic components, then Sxx(f) will have
impulses
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= Motivation
Estimation of the ensemble averages from the time
averages ...
Over a single member function of finite duration...

m  Definition
A stationary random process is ergodic if its ensemble
averages equal (in a mean-square sense) appropriate
time averages

Ergodicity is related to specific ensemble averages
m  Benefit

Ergodicity means that any ensemble average of X(t)
can be determined from a single member function of
X(t) with probability one
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MM1. Response of LTI Systems to Random
Inputs

Reading page: Chapt 4, pp.216-242

ey

System:

Intput Signal Se— E;yﬁs\_lcm f——a0  Output Signal

We look at a system as a black box which generates an output signal depending
on the input signal and possibly some initial eonditions.
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LTI systems
1.1. Discrete-time linear time-invariant (LTIV) systems

L.LL1. Diserete-time LTIV system

x(m) S L “VE"“‘“ o yinl = Lixini)

¥l

»iar The impulke respanse (1R () of £ is the response of £ to the wit pulse
) 8 ‘-“V;.\‘-Wm & in

) @, )+ ayy ()

1.1.2. Steady-state description of a LTIV systern

Lincar * Impulse rexponse:

i

Timerimariant wamely

§ ; hiny = L180n]
= LTIV system 5
x(mng) L yin-ng) um‘ B0m hing= Ll
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LTI systems (Cont’d)

Summary: -6 relationship of a LTIV system:

Time doman
ume cominn ) BOm *x(m)

) SR e win)
_________ .Q—---.ﬁ--—-—.-—%—-
Xf) H(N ¥ih
II"r\:r|u-c|1«:3.I domain I | Yy = HO X0 |
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] Response of LTI §;'?iems to Randofll
Inputs

m  LTIsystem: y[n]:Zkiﬁ =x[k] h[n-k]
= Random inputs

= Two ways for the response computation

Compute the response of the LTI system to each member
sequence of the random input and then obtain the properties of
the ensemble of the output sequences,

Computer the properties of the output directly

22
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Response of Discrete-Time Systems

m A causal LTI system with the IR h[n]/H(f)

= The output (random sequence) Y[n] corresponds the
random input sequence X[n] is

Y[n]=X[n]*h[n]=E,_h[KIX[n-K]

= The mean sequence of the output Y[n] is
Wy[n]=E{Y[n]}=X,_ .~ h[K]E{X[n-k]}

m  The autocorrelation sequence of the output Y[n] is
Ryy[ngn,l= Zyyo o B hK Jh[k,] Ryx[ng-ky, n,y-k, ]
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Response of Discrete-Time Systems (Cont’d)

m If X[n] is WSS, then the output will also be WSS, i.e.,
Py=E{Y[n]}=E,_.~ hIKIE{X[n-k]}= pH(0)

m  The autocorrelation of Y[n]:
RyyIngmy = o oo *hKy ThK, IRy [(05-0)-(Ky-K )]

Ryy[n]=Ryx[n]* h[-n]* h[n]= R;,[n]* Ryx[n]

m  The psd of Y[n] is
Syy ()= Sxx (OH(-H)H(E)=Sy (OIH(F)I>
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Response of Discrete-Time Systems (Cont’d)
m  The cross-correlation between X[n] and Y[n] is
Ryx[n}=Z,_ . ~h[-k]Ryy[n-k]=h[-n]*Ryx[n]
Ryy[n}=Z,_ . ~h[K]Rxx[n-K]=h[n]*Ryx[n]
Sxy(f)= H(H)Sxx ()

!!!The basis of frequency domain techniques!!!
for the design of LTI systems
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Special Case: White noise (Cont’d)

v Specirum of a white process:
I Z(w) is o while process:
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Special Case: White noise

White process:
Zimy is awhite process if it satishes the following conditions:

- Z(n) 15 a mndom process

- by = El&(m)] = 0
“ gtk = EIZ0Zn k1 = B,k (Tx:ﬁ[.h
Bk
2
Oz
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Estimation of System Parameters
= If the input X[n] is a white noise, i.e.,
Ky=0; Ryx[n]= 6% 8(n), or Sy (f)=0?,

According to
Ryyl[nl= Z;_.~h[kIRyx[n-k]=h[n]*Rxy[n]

There is
Ryy[nl=c*hin], or  Syy(f)=c*H(f)
m It serves as the basis for estimating the impulse/

frequency response of LTI systems if the output in
response to a white-noise input can be observable
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Summary: Second-order -0 relationship of a LTIV system:

By = H{Djp

Time domm
R LTIV system Rk
M Bppd®) ki) --'IEI, i3 by Syl
------ ————-___ ———d—--z—-
Bl H A Syl S
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Example
L.L5, Example: First ovder recarsive filier

= Block dingram and recursive equation:

- in)
L] t - ‘Il.lildll- vin—11
<7l
i - 1)
M) = am) +py(n—1) O =0 nen)

30
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Example (Cont’d)
* Impulse response:
A= S By
1 £ g I‘
10

b 1o gt
1 2 3 4..»

I8k g0

o' nzo

| 0; a0
i)
« Stability condition:

- " i
L N " |im__\,_m'|_|‘%|. . = lef<1

n=0

4 " 1 r.’l\'. ;
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Example (Cont’d)
s Second-order I-0 relationship:
- Time dormain:
Wy = Hi,

ciles
e

Ryyplhy = Ry(k R (k)

3

L]
Ll
| KD

[R;,;,[RJ Z "Ml'tm.lkl tu‘l Z ¢3M‘ ¢|H_|:]
PR men 1
- Frequeney domain:
Sy |r.rr.."]|:.5'_,.-_,‘-[_,l"]
1

—— S}
11— dexp-j2afil
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Response of Continuous-Time Systems

= Deterministic case
Output of a causal LTI system is

y0 =[ x@ht-0ydr = h@x@e-de

Frequency expression Y(f)=X(HH(f)

m  The output (random process) Y(t) of a causal LTI system
in response to a random input process X(t) is

Y(t)= J”; X (Dh(t-7)d7 = Iih(r)X(t —0)dr

e

Example (Cont’d)

= Transfer finction:

=

H(M = Fih(m} Z@"cxp[ 2l
w0
¥ lgexp(-i2nfil"
w=0

1
1 dexp(—j2mf)

17Oy
1
A
_/—I_\
______ .
1 ﬂ 1
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, Example (Cont’d)
= Special case: AR(T) procesy (see Section 2.2):
17X () is a while Gaussian process, o
Sppld) = ————
|1~ spexp(-j2nf)|”
Hp =0
Syl

Ryp (K 55y
L]
X r
Rypplk)
o
RPN S [P
£or 1-03 b
1-8* 1-4
y 11 I l | 1
prg] 1 k
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Response of Continuous-Time Systems (Cont’d)
m  The mean function of the output Y(t) is

w0 =EY0) = [ uy @h(t-)de = [ h@p, (t-)dt
m  The autocorrelation function of the output Y(t) is

Ry (1) = EQY @)Y (1)) = [ [T h@)h(e) Ry (1, = 7,01, = 7,)d 7 d,

36
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Response of Continuous-Time Systems (Cont’d)

m  The cross-correlation between X(t) and Y(t) is
Ryx(T)= h(-1)*Ryx(T), and Ryy(T)= h(T)*Ryx(1)

m  The autocorrelation of Y(t) is
Ryy(7)=Ryx(1)*h(1)= Rxx(7)* h(-1)* h(1)

m  The psd function of Y[n] is
Syy ()= Sxx (OH(-H)H(H)=Sy (OIH(F)I>

IH(f)? is referred to as the power transfer function

= e

e ——
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= Summary: [-0 relation ship of a LTIV system:

WY = RN Fxin

TITV ayelem

i) kit YLl
_________ e e .2_-
A HU) Y(f)
Frequency domam I ¥i B Xoh |
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Summary: Second order I-0 relationship of a LTIV sysiem:

B
Byplm) = Bpin* R (1)

R TTTV svelcm R
o s ey ey (T) Hyr Ry b T)
——————— z - — ] —-—o——-i—-
Sy Hi ] ol Sl
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Example
1.2.5 Example: Idcal integrator

= Block diggram and inpui-owiput relativnship:

B

e

il

!
Xt ——n ;— [ staidn  f——t it
=T

L
ik
W= = | aied
¥ =z |
=T
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