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Stochastic Analysis for Engineers Stochastic Analysis for Engineers 

Lectured by Zhenyu Yang
Fall 2004, Aalborg University Esbjerg
Course Web:http://www.cs.aue.auc.dk/~yang/course/stoc04.htm
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ObjectiveObjective
� To give students an understanding of the 

description of stochastic signals in order to 
perform filtering and detection

� To enable students to apply estimation and 
detection methods for simple problems in 
connection with stationary stochastic processes

� To give students an understanding of spectral 
estimation techniques
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Textbook

� K. Sam Shanmugan and BArthur M. reipohl: 
"Random Signals - Detection, Estimation 
and Data Analysis ", John Wiley Sons, Inc., 
1988. 
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Content
� Discrete linear models 

� Autoregressive (AR) processes
� Moving average (MA) models
� Autoregressive moving average (ARMA) models

� Signal detection
� Hypothesis testing 
� Decision theory and decision rules
� Binary detection 
� M-ary detection

� Linear minimum mean-square error estimation
� Linear minimum mean-square error estimators 
� Nonlinear minimum mean-square error estimators
� Joint Gaussian random variables
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Content (cont’d)

� Discrete time Wiener filters
� Non-causal discrete time Wiener filters
� Causal discrete time Wiener filters

� Discrete time Kalman filters
� Kalman filters
� Extended Kalman filters 

� Parameter estimation of stochastic processes 
� Model-free estimation: mean value, autocorrelation, PSD 
� Model-based estimation for AR, MA, ARMA processes

• Case studies
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Ten Lecture Topics



2

8-Sep-04 Stochastic Processes 7

What have we learned in Sem6? What have we learned in Sem6? 

� MM1: Definition and description of stochastic processes

� MM2: Special classes of stochastic processes and 
stationarity

� MM3: Autocorrelation and power spectral density functions 
of WSS processes

� MM4: Continuity, differentiation, integration, time 
averaging and ergodicity

� MM5: Response of Linear Systems to Random Signals
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Random ProcessesRandom Processes
� Let S be the sample space of a random experiment and let 

t be a variable that can have values in the set Γ⊂Γ⊂Γ⊂Γ⊂R1, the 
real line. A real-valued random process X(t), t ∈Γ∈Γ∈Γ∈Γ, is a 
measurable function on Γ×Γ×Γ×Γ×S that maps Γ×Γ×Γ×Γ×S onto R1

� A real-valued random process can be described by its nth 
order distribution function like 

for all n and t1, …, tn ∈Γ∈Γ∈Γ∈Γ
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Method of DescriptionMethod of Description
� First and second order characteristics

� The mean of X(t) 

� The autocorrelation of X(t)
�

� The autocovariance of X(t) 

� The correlation coefficient of X(t) 
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MatlabMatlab CalculationsCalculations
� randn(m,n) function generates arrays of random numbers 

whose elements are normally distributed with mean 0, and 
variance 1

� M = mean(A) returns the mean values of the elements 
along different dimensions of an array.

� C = cov(x) where x is a vector returns the variance of the 
vector elements.

� C=xcorr(X,Y) estimates the cross-correlation sequence of a 
random process. Autocorrelation is handled as a special 
case.

� C=corrcoef(X) returns a matrix of correlation coefficients 
calculated from an input matrix whose rows are 
observations and whose columns are variables.
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StrictStrict--Sense Sense StationarityStationarity (SSS)(SSS)

� A random process X(t) is called time stationary or 
stationary in the strict sense (SSS) if all of the 
distribution functions describing the process  are 
invariant under a time translation, i.e., 
for all t1,t2,… tk,t1+ττττ,t2+ττττ, …,tk+ττττ ∈Γ∈Γ∈Γ∈Γ, and all 
k=1,2,…,

P[X(t1)≤≤≤≤x1, X(t2)≤≤≤≤x2,…, X(tk)≤≤≤≤xk]
=P[X(t1 +ττττ)≤≤≤≤x1, X(t2 +ττττ)≤≤≤≤x2,…, X(tk +ττττ)≤≤≤≤xk]
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WideWide--Sense Sense StationarityStationarity (WSS)(WSS)

� A random process X(t) is said to be stationary in 
the wide sense (WSS) if its mean is a constant 
and the correlation function depends only on the 
time difference, i.e., 

E{X(t)}=µµµµX=constant,        

E{X*(t)X(t +ττττ)}=RXX(ττττ)
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Autocorrelation Properties Autocorrelation Properties 
RXX(ττττ)=E{X(t)X(t+ττττ)}

� RXX(0)=E{X2(t)}≥≥≥≥0  - average power
� RXX(ττττ) is an even function of ττττ, i.e., RXX(ττττ)= RXX(-ττττ)
� RXX(ττττ) is bounded by RXX(0) , i.e., |RXX(ττττ)|≤≤≤≤ RXX(0)
� If X(t) contains a periodic component, then RXX(ττττ) will 

also contain a periodic component
� If limτ→∞τ→∞τ→∞τ→∞ RXX(ττττ)=C, then C= µµµµX

2

� If RXX(T0)= RXX(0) for some nonzero T0, then RXX(ττττ) is 
periodic with a period T0

� If RXX(0)<∞∞∞∞,  and RXX(ττττ)  is continuous at ττττ=0, then it is 
continuous for every ττττ
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Frequency Analysis of Random SignalsFrequency Analysis of Random Signals

How about the spectral properties of the random 
processes?

� Direct Fourier transform can not be applied to 
random signals 

� The autocorrelation function RXX(ττττ) contains some 
information about the frequency of the random 
signals

� Consider real WSS random processes…

8-Sep-04 Stochastic Processes 15

Power Spectral Density FunctionPower Spectral Density Function
� For the random WSS random process X(t), the 

PSD function is defined as

� Given the PSD function, the autocorrelation 
function can be obtained through the inverse 
Fourier transform

�
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Properties of the PSD FunctionProperties of the PSD Function

The PSD function called the spectrum of Random process
X(t), has the properties

� SXX(f) is real and nonnegative
� the average power in X(t) is

� If X(t) is real, then SXX(f) is even
� If X(t) has periodic components, then SXX(f) will have 

impulses

�
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Properties of the PSD Function (contProperties of the PSD Function (cont’’d)d)
� Band-related processes

� Lowpass processes… its psd is zero for |f|>B, B-
bandwidth

� Bandpass processes… its psd is zero for fc-B/2<|f|< 
fc+B/2, B-bandwidth, fc – center frequency

� Power and bandwidth calculations
� The power within an interval

� Effective bandwidth Beff, coefficient time ττττc
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ErgodicityErgodicity
� Motivation

� Estimation of the ensemble averages from the time 
averages … 

� Over a single member function of finite duration…
� Definition

� A stationary random process is ergodic if its ensemble 
averages equal (in a mean-square sense) appropriate 
time averages

� Ergodicity is related to specific ensemble averages
� Benefit

� Ergodicity means that any ensemble average of X(t)
can be determined from a single member function of 
X(t) with probability one
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MM1. Response of LTI Systems to Random 
Inputs

Reading page: Chapt 4, pp.216-242

Reading page: 
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LTI systems
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LTI systems (Cont’d)
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Response of LTI Systems to Random 
Inputs

� LTI system: y[n]=ΣΣΣΣk=-∞∞∞∞
∞∞∞∞x[k] h[nh[n--k]k]

� Random inputs 

� Two ways for the response computation
� Compute the response of the LTI system to each member 

sequence of the random input and then obtain the properties of 
the ensemble of the output sequences, 

� Computer the properties of the output directly
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Response of DiscreteResponse of Discrete--Time SystemsTime Systems
� A causal LTI system with the IR  h[n]/H(f)h[n]/H(f)

� The output (random sequence) Y[n]Y[n] corresponds the 
random input sequence X[n]X[n] is 

Y[n]=X[n]*h[n]=ΣΣΣΣk=-∞∞∞∞
∞∞∞∞h[k]h[k]X[n-k] 

� The mean sequence of the output Y[n]Y[n] is
µµµµY[n]=E{Y[n]}=ΣΣΣΣk=-∞∞∞∞

∞∞∞∞ h[k]h[k]E{X[n-k]}

� The autocorrelation sequence of the output Y[n]Y[n] is
RYY[n1,n2]= ΣΣΣΣk1=-∞∞∞∞

∞∞∞∞ ΣΣΣΣk2=-∞∞∞∞
∞∞∞∞h[kh[k1]h[k]h[k2] ] RXX[n1-k1, n2-k2]
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Response of Discrete-Time Systems (Cont’d)

� If X[n]X[n] is WSS, then the output will also be WSS, i.e., 
µµµµY=E{Y[n]}=ΣΣΣΣk=-∞∞∞∞

∞∞∞∞ h[k]h[k]E{X[n-k]}= µµµµXH(0)H(0)

� The autocorrelation of Y[n]Y[n]:  
RYY[n1,n2]= ΣΣΣΣk1=-∞∞∞∞

∞∞∞∞ΣΣΣΣk2=-∞∞∞∞
∞∞∞∞h[kh[k1]h[k]h[k2]]RXX[(n2-n1)-(k2-k1)]

RYY[n]=RXX[n]* h[-n]* h[n]= Rhh[n]* RXX[n]

� The psd of Y[n]Y[n] is
SYY(f)= SXX(f)H(-f)H(f)=SXX(f)|H(f)|2
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Response of Discrete-Time Systems (Cont’d)

� The cross-correlation between X[n]X[n] and Y[n]Y[n] is 

RYX[n]= ΣΣΣΣk=-∞∞∞∞
∞∞∞∞h[h[--k]k]RXX[n-k]=h[-n]*RXX[n]

RXY[n]= ΣΣΣΣk=-∞∞∞∞
∞∞∞∞h[k]h[k]RXX[n-k]=h[n]*RXX[n]

SXY(f)= H(f)SXX(f) 
!!!The basis of frequency domain techniques!!!

for the design of LTI systems
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Special Case: White noise
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Special Case: White noise (Cont’d)
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Estimation of System ParametersEstimation of System Parameters

� If the input X[n]X[n] is a white noise, i.e.,  
µµµµY= 0; RXX[n]= [n]= σσσσ2 δδδδ(n), or SXX(f)=σσσσ2, 

According to 
RXY[n]= ΣΣΣΣk=-∞∞∞∞

∞∞∞∞h[k]h[k]RXX[n-k]=h[n]*RXX[n]
There is 

RXY[n]= σσσσ2 h[n]h[n],   or  SXY(f)= σσσσ2 H(f)

� It serves as the basis for estimating the impulse/ 
frequency response of LTI systems if the output in 
response to a white-noise input can be observable
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Example
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Example (Cont’d)
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Example (Cont’d)
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Example (Cont’d)
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Example (Cont’d)
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Response of ContinuousResponse of Continuous--Time Systems Time Systems 
� Deterministic case

� Output of a causal LTI system is 

� Frequency expression 

� The output (random process) Y(t)Y(t) of a causal LTI system 
in response to a random input process X(t)X(t) is 

ττττττ dtxhdthxty )()()()()( −=−= ��
∞

∞−

∞

∞−

)()()( fHfXfY =

ττττττ dtXhdthXtY )()()()()( −=−= ��
∞

∞−

∞

∞−

8-Sep-04 Stochastic Processes 36

Response of ContinuousResponse of Continuous--Time Systems Time Systems (Cont’d)(Cont’d)

� The mean function of the output Y(t)Y(t) is

� The autocorrelation function of the output Y(t)Y(t) is
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Response of ContinuousResponse of Continuous--Time Systems Time Systems (Cont’d)(Cont’d)

� The cross-correlation between X(t)X(t) and Y(t)Y(t) is 
RYX(ττττ)= h(-ττττ)*RXX(ττττ), and RXY(ττττ)= h(ττττ)*RXX(ττττ)

� The autocorrelation of Y(t)Y(t) is
RYY(ττττ)=RYX(ττττ)*h(ττττ)= RXX(ττττ)* h(-ττττ)* h(ττττ)

� The psd function of Y[n]Y[n] is
SYY(f)= SXX(f)H(-f)H(f)=SXX(f)|H(f)|2

|H(f)|2 is referred to as the power transfer function
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Example


