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MM3. Signal Detection (Part One)

�Hypothesis testing
�Decision rules
�Binary detection
Reading page: Chapt 6, pp.341-352
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Motivation
� Target detection and tracking – Radar system
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Motivation (Cont’d)
�Fault detection
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Signal Detection and Estimation
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3.1 Hypothesis Testing

In hypothesis testing, a decision is made based on the 
observation of a random variable as to which of several 
hypotheses to accept
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Binary Hypothesis Testing
� Two hypotheses: H0 and H1

� One observation y of a random variable Y whose pdf under 
each hypothesis is known, denoted as f(y|H0) and f(y|H1)

� A decision rule is to decide
� D: R � {H0 , H1},                 R range of Y
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Binary Hypothesis Testing (Cont’d)
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Decision Rule
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Probabilities of Decisions
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Type I and II Errors

Pe=PfP(Ho)+PmP(H)
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Example: BPAM Signal Detection
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Example: BPAM Detection (Cont’d)
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3.2 Decision Rules

�Maximum ”a posteriori” decision rule
�Bayes decision rule – Costs of errors
�Minmax rule and Neyman-Pearson rule

21-Sep-04 Stochastic Processes 14

Maximum ”a posteriori” (MAP) Rule

� The MAP rule is of the form:

� P(Hi|y), i=1, 2, is the “a posteriori” probability of Hi when 
Y=y is observed 

� Bayes rule:
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MAP Rule (Cont’d) – Likelihood Ratio

� MAP decision rule: 

� Prior distribution P(Hi), i=1,2

� Likelihood ratio L(y): 
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Example: BPAM MAP Detection
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Example: BPAM MAP Detection
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3.2 Decision Rules

�Maximum ”a posteriori” decision rule
�Bayes decision rule – Costs of errors
�Minmax rule and Neyman-Pearson rule
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Bayes’Bayes’ Decision Rule Decision Rule –– Cost of ErrorsCost of Errors

� Motivation: cost of wrong decisions
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Bayes’Bayes’ Decision RuleDecision Rule

� Average cost:

� Bayes’ decision rule: minimize the average cost

))((
))((

)|(
)|(

)(
11011

00100

0

1

0

1

CCHP
CCHP

H

H

Hyf
Hyf

yL
−
−= <

>

21-Sep-04 Stochastic Processes 21

Bayes’Bayes’ Decision Rule Decision Rule –– How?How?

See page349-350
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3.2 Decision Rules

�Maximum ”a posteriori” decision rule
�Bayes decision rule – Costs of errors
�Minmax rule and Neyman-Pearson rule
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Minmax Decision Rule
� Motivation

The priori distribution P(Hi), i=1,2 is unknown
� Maximum average cost of a decision rule: 
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Minmax Decision Rule (Cont’d)
� Minimax decision rule: minimize the maximum average 

cost of all possible decision rules: 
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Neyman-Pearson Decision Rule


