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MMa3. Signal Detection (Part One)

mHypothesis testing

mDecision rules

mBinary detection

Reading page: Chapt 6, pp.341-352
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Motivation

m  Target detection and tracking — Radar system
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Motivation (Cont’d)
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Figure 1 An observer-based fault diagnostic scheme (Allesandri ef af, 1999),
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Signal Detection and Estimation

Example 1: Detection of a BPAM signal:
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Rirange of ¥
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3.1 Hypothesis Testing

e

In hypothesis testing, a decision is made based on the
observation of a random variable as to which of several
hypotheses to accept
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Binary Hypothesis Testing

Two hypotheses: H, and H,

One observation y of a random variable Y whose pdf under
each hypothesis is known, denoted as f{y|H,) and f(y|H,)

A decision rule is to decide

D:R 2 {H,,H,}, R range of Y
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A Hy
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is Testing (Cont’d)

The decision mile 2 determines two decision regions in & :

Binary Hypothes

Ry tve Ry == Dy i
R, :ye &, == v H

o

iy
[0 = B

Properties of &, and & :
-RyR = R
- iy ]
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Decision Rule
« Decision table:
= True hypathesis £
2 iy, H,
y, CH . H ) CH g Hp)
H, T (H . Hp) (H . H)

-] s Cerme decision

- I:l : Incorrect decision:

The pair (H, .|'.|"I.'| (i, § = 0.1 in the above table means & M a nd
H H ..
&
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Probabilities of Decisions
= Probabilities of corvect decision and of making an error:
- Probability of correct decision:
P,o= Pl =Hy H=H+ Pl =H . H=H|]
P ”nl”u]"”'”ru' PR P

- Probahility af incormect decision:
P_= PID=H, H=H|+PID=Hy H=H||
PLD = | H \PU) + PLD = H | P,

Obvicusly,
P =1-F_

[ e
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Type I and II Errors

s Tipes af error and their probabilioe:
- False alarm [ Type | errorj: 2
False alarm probability:
I Pe=PID = H,|H,] I

- Miiss (Type U emor): D = A when | is e

Probability of a miss:

P, =FPLD = Hy|H\] |

P,=P.P(H,)+P,P(H)
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Example: BPAM Signal Detection
Example: Binary pulse amplitude modulation (BPAM )

- Signal model:

¥F=x+W
- where
- A uncer Hy ® ¥
+4 uncker Hy
—t— - .
A il +4 x .

- W is a Gaussian noise, L.c.:

- W isa Gaussian random variahle,

- with expectation E[ ] = 0,
2 2
- and variance E[ 7] o .

Probability density fimction (pdf) of #:

o i
Jiwl exp S W
Iro 26"
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H, when F s true.

- Pdiof ¥ under 7 and 24, :
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3.2 Decision Rules

mMaximum "’a posteriori” decision rule
mBayes decision rule — Costs of errors

mMinmax rule and Neyman-Pearson rule
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MAP Rule (Cont’d) — Likelihood Ratio

m  MAP decision rule:

Hl
SOUH)DPH,) 2 f(y1H)P(H,)
H()
m  Prior distribution P(H;), i=1,2

m  Likelihood ratio L(y):
I(y)=In(L(y))

O] H.)]“fl m[P(H.))
FOTHY g\ P(H)

_ronay ey

Li
OOy g P,

1= ln[
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Maximum ’a posteriori’’ (MAP) Rule

m  The MAP rule is of the form:

H

P(H,1y) 2 P(Hyly)

H,

m P(Hjly), i=1, 2, is the “a posteriori” probability of H; when

Y=y is observed

= Bayes rule:

P(H,;ly)=

21-Sep-04

f(y1H,)P(H,)
f

P(ylH,)P(H,)

< P(Hly)= P(y)
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- Likelihood ratio:

: foHy)
(1)
M ToTy
1
(p{ — (- A)
1 2 2
——————————— oxp —2\[_\" Ay A
L'xp{ %U-nm'} =7
267

- Loglikelihoed ratio

fvjiy)
) |..[ ]

Tl Maximum likelihood (ML) decision rule:

Lt %
26" 1

=5 Plig) = Pl 3
? the MAP decision mle reduces to the ML decision rule:
- MAP decision mile: d
2ay H (L sty < Sy
2y 4 o[ .

Hy 2 (PIHy)
R il SR
P
rocesses

Selecting a unifonm = priori™ pdf for the hypotheses, ie.
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- Pdiof ¥ under 7 and 24, :

frlHg) = foo],

foqE) = fom]

A

3.2 Decision Rules

mMaximum “a posteriori” decision rule
mBayes decision rule — Costs of errors

mMinmax rule and Neyman-Pearson rule
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Bayes’ Decision Rule — Cost of Errors

= Motivation: cost of wrong decisions

et fimction:

In many engineering branches costs have to be taken into account depending
on the decision and the true hypothesis.

Dcixian True hypoathesis
A i, i,
iy Can Car
i 1 Clu C] 1

Usually, the coat of making a wrong decision is higher than that of making a
comed decision:

Cipz Oy and Cop =y
21-Sep-04
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Bayes’ Decision Rule - How?
Proaf:

The average cost € can be wrillen as:

T = O PlH] + O PLE T

b [PLH Eg, - € 018 - PG g~ Copl S| Hy ) v
Hh

Naote that the Bayes nile reduces to the MAP mle when the cost is selecied to
A
Cgp=Cp =0

[-lll l“”ul 1

See page349-350
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m  Motivation

21-Sep-04

Minmax Decision Rule

The priori distribution P(H;), i=1,2 is unknown
m  Maximum average cost of a decision rule:

Letus consider the hehavior of T for a fixed decision mle 7 as
By PLH,) varies:

-

T

Tl
! [
! 1
| |
| I
| |
i

o P, (Pay, [

T 1) is the maximum averape cost and
PLGL = (), PUHY = 1 (g is the wors case = priori” pdf
when employing decision le 1.

Bayes’ Decision Rule

= Average cost:

T

CinPLE = Hy g IPLHG 1+ C o PLD = H I L)

FE P = Ho[H 1P+ €y PLD = Hy |, PL|

= Bayes’ decision rule: minimize the average cost

Loy = L0t T P €=
f()’lHo)];(O P(H,)(Cy =Cy)
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3.2 Decision Rules

mMaximum “a posteriori” decision rule
mBayes decision rule — Costs of errors

sMinmax rule and Neyman-Pearson rule
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Minmax Decision Rule (Cont’d)

®  Minimax decision rule: minimize the maximum average
cost of all possible decision rules:

Cm(DMM)SCm(D) for any decision rule D

—vemge costal £
—Avemge cost ol IF

t
0 tegl, e, 1
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The Neyman-Fearson (MNP decision rule is used when neither an “a prion™ pdf
nor cost assigmments anc given.
A NP decision mle minimizes the probahilityg of false alanm

P = PLD = H\ ] while keeping the probability of a miss

Fao = PLD = |y below s cortain spedi fed level, say o

Example: BPAM (com™d)

R [
FvlE ) Fiw|H
1
1
1
1
1
1
i e ;
! Fost
o : -

Thus, a NP decision rule Dy p, satisfics the incguality

I P (g 12 P D) for any desiman rule 1) such that 2,000 o I
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