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1 Motivation 

For the answer we need some basic concepts and definitions. We start with a definition for the term 
system: A system is characterized by the fact that we can say what belongs to it and what does not. We 
can specify how it interacts with its environment  Hence it can be observed and controlled. 

There are variables that are generated by the environment and that influence the behavior of the 
system. These are called the inputs of the system.  
There are other variables that are determined by the system and that in turn influence the behavior 
of its environment. These are called the outputs of the system.  

This leads to a possible definition for the term system [1]: 

This leads to a definition for the term experiment: 

To perform an experiment on the system means to apply a set of external conditions to the inputs and to 
observe the reaction of the system to these inputs by recording the behavior of the outputs. The major 
disadvantage with real systems is the fact that these systems are under the influence of inaccessible 
inputs (so called disturbances) and a number of useful outputs are not accessible through measurements. 
The definition of a system and an experiment gives a way to define the term model: 

In the present course, we concentrate ourselves to a subclass of models which are called mathematical 
models. This is a description of the relationship among the system variables in terms of mathematical 
equations. By performing experiments, we collect knowledge about a system. 

In the beginning, this knowledge is unstructured. By understanding what are causes and what are effects, 
we organize the knowledge. In fact, we are engaged in a process of modelling. The major task in which 
a model is to be used has basic implications on the choice of the particular form of a model. In other 
words, a model can be considered as a specialized tool, developed for a particular application. Of course, 
such approach leads to different models for different uses of the same system. In particular a control 
engineer uses a model for the development of control algorithms. Thus models, for control reasons, 
should be as simple as possible. Often a model which takes into account the first order effects is 
adequate. A well designed controller suppresses the second order effects. Another point is that the effort 
of the controller development is often related to the complexity of the model. Simulation engineers want 
to develop models which fit the experimental data in an appropriate way. This approach may lead to 
more complex models.  

There are different types of mathematical models [1], [6]. We concentrate our investigations to 
lumped parameter models which are described by ordinary differential equations of the form 

Why should we study modeling?  

A system is a potential source of data  

An experiment is the process of extracting data from a system by exerting it through its inputs 

A model M for a system S and an experiment E is anything to which E can be applied in order to 
answer questions about S  

Modeling means the process of organizing knowledge about a given system  
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Moreover, we are interested especially in electromechanical systems. 

1. We start with a physical description of the dynamical systems. This includes a discussion of 
physical effects which should be taken into account.  

2. Calculation of a single quantity which determines the time behavior of the dynamical system. 
Later, we will show that this quantity is called the extended Lagrangian.  

3. Derivation of the equations of motion. A computer algebra program (MAPLE V) is used to derive 
the mathematical model in an automatic way.  

4. Simulation code (MATLAB or DYNAST) for the model is generated automatically.  
5. Simulation  

The derivation of the equations of motion (the mathematical model) can be obtained from variational 
principles applied to energy functions. There exists a well established common terminology for all type 
of systems, whether electrical, mechanical, magnetic, etc., by defining energy functions in terms of the 
generalized coordinates. Then by the use of a single fundamental postulate, e.g. Hamilton's principle, the 
equations of motion are determined. The variational approach is quite formal analytically and as a result 
insight into physical processes can be lost in the mathematical procedure. Nevertheless, if the method is 
properly understood, physical insight can be gained due to the generality of the method. There are a 
number of different energy functions (e.g. the Lagrangian, the total energy) which can be used as a 
energy function.  

In this course the modelling of purely mechanical systems is mainly based on the Lagrangian which 
is a function of the generalized coordinates and the associated velocities. If all forces are derivable from 
a potential, then the time behavior of the dynamical systems is completely determined. For simple 
mechanical systems, the Lagrangian is defined as the difference of the kinetic energy and the potential 
energy.  

There exists a similar approach for electrical system. By means of the electrical coenergy and well 
defined power quantities, the equations of motions are uniquely defined. The currents of the inductors 
and the voltage drops across the capacitors play the role of the generalized coordinates. All constraints, 
for instance caused by the Kirchhoff laws, are eliminated from the considerations.  

In consequence, we have quantities (kinetic and potential energy, generalized forces) which 
determine the mechanical part and quantities (coenergy, powers) for the description of the electrical part. 
This offers a combination of the mechanical and electrical parts by means of an energy approach. As a 
result, we get an extended Lagrangian.  

2 Mechanical Systems 

2.1 Derivation of the Lagrange Equations 

In the case of systems of N particles we need, in general, 3N coordinates to specify the position of all 
particles. If there exist constraints, then the number of coordinates actually needed to describe the 

How do we perform the process of modeling?  

Summary  
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system is reduced. For instance, for the specification of a rigid body, we need six coordinates, three for 
the reference point and three for the orientation. In general, a certain minimum number n of coordinates, 
called the degrees of freedom, is required to specify the configuration. Usually, these coordinates are 
denoted by q

i
 and are called generalized coordinates. The coordinate vector  

of a specific particle and the generalized coordinates are related by equations of the form  

The time t appears explicitly in the case of moving constraints, such as a particle is constrained to move 
on a surface which itself is moving in a predefined way. The choice of the generalized coordinates is 
usually somewhat arbitrary, but in general each individual energy storage element of the system have a 
set of generalized coordinates. For a dynamic system the generalized coordinates do not completely 
specify the system and an additional set of dynamic variables equal in number to the generalized 
coordinates must be used. These dynamic variables can be the first time derivatives of the generalized 
coordinates, the velocities, or can be a second set variables (e.g. the generalized momenta).  

In order to find the differential equations of motion in terms of the generalized coordinates, we use 
the energy of the system. The kinetic energy T in terms of Cartesian coordinates is given by  

Remark 1 It is assumed that masses are not functions of the velocities or coordinates.  

From the relation (2), we obtain  

and  

which gives  

after multiplication with vi
T and differentiation with respect to t. This leads to 

 

(1)

(2)

(3)

(4)

(5)

(6)
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Next, we multiply by m
i
 and make use of the relation 

 

Hence, by summing over all i, we find  

Here the kinetic energy T  is assumed to be a function of . The expression  

defines the generalized forces Q
j
. Hence, we obtain the result 

 

These are differential equations of motion in the generalized coordinates q
j
. They are known as 

Lagrange equations of motion. If part of the generalized forces are conservative, then some Q
j
 can be 

expressed as  

and finally  

V is called the potential energy function and the Qj
e are generalized forces not derivable from a potential 

energy function V . Now, the equations can be written more compactly by defining the Lagrangian  

which leads to  

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)
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The Lagrange equations have been derived from Newton's laws. In fact, they are a redefinition of 
Newton's laws written out in terms of appropriate variables such that constraint forces are eliminated 
from considerations. The dynamical system is defined by a single function L, at least if all forces are 
conservative. The general procedure for finding the differential equations of motion for a system is as 
follows:  

1. Select a suitable set of coordinates to represent the configuration of the system.  
2. Obtain the kinetic energy T as a function of these coordinates and their time derivatives.  
3. If the system is conservative, find the potential energy V as a function of the coordinates, or, if the 

system is not conservative, find the generalized forces Qj
e.  

4. The differential equations of motion are then given by equations (15).  

Remark 2 The application of the Lagrangian formulation is not restricted to mechanical systems. So, 
there exists Lagrangians which are not defined as the difference between the kinetic and potential 
energy.  

Remark 3 The Lagrangian function determines the equations of motion uniquely, the converse of this 
fact is not true.  

Remark 4 The Lagrange equations were derived without specifying a particular generalized coordinate 
system. Hence, they are also valid in other coordinate systems. Lagrange's equations are coordinate 
independent.  

Remark 5 The Lagrangian function is a so called state function. Its value at a given instant of time is 
given by the state of the system at that time, and not on the history.  

Remark 6 The Lagrangian depends on the generalized coordinates q, the associated velocities , and 
the time t.  

As mentioned above, external forces can be subdivided into two groups:  

The first group consists of forces F which are given by a potential function 

The second group is formed by non potential forces.  

Suppose a non potential force which is a function of the velocity and that the force is directed opposite 
to the velocity of the particle, e.g.  

(15)
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with g > 0. Hence, the force does negative work and this leads to energy loss. Such forces are called 
dissipative. From the relations  

we get  

Let us define the so called dissipative function or Rayleigh potential PR with 
 

The combination of the relations (19) and (20) leads to  

The prime denotes the variable of integration. If g > 0 is positive, then PR is a positive function. The 
modified Lagrange equations now read  

Of course there exist other dissipative forces not related to an equation like (17).  

2.1.1 Example I 

Consider the mass–spring system given in figure (1).  

(17)

(18)

(19)

(20)

(21)

(22)
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In the equilibrium (zero forces F
1
 and F

2
, the system is forced by the Earth gravitational force mg) the 

length of the springs are given with l
1
, l

2
, and l

3
. Then, the coordinates x

a
 and x

b
 measure the deviation 

from the equilibrium. If x
a
 and x

b
 are specified, then the geometric configuration of the system is 

completely determined. So, we have found a set of generalized coordinates x
a
 and x

b
 and their associated 

velocities v
a
 and v

b
. Referring to equation (14) and equation (15), we start with the calculation of the 

kinetic energy and find 

 

Next, the potential energy is given as  

 

with the lengths x
i
 of the springs. With the geometric relations 

 

 

the Lagrangian follows as  

 

The generalized forces are  

 

The application of the Lagrange Formalism leads to the equations of motion. 

  
Figure 1: Mechanical example.
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2.1.2 Example II 

Consider the motor–shaft–load system given in figure (2).  

The motor is represented by the rotating inertia J
1
 and the torque generated by the motor is a given 

function T
1
. The load represented by the inertia J

2
 is coupled to the motor by means of an elastic shaft 

with stiffness c. In addition, there is a load torque T
2
. The coordinates 

1
 and 

2
 determines the 

geometric configuration of the system completely. Therefore the generalized coordinates are 
1
 and 

2
 

and their associated angular velocities 
1
 and 

2
. Referring to equation (14) and equation (15), we start 

with the calculation of the kinetic energy and find 

 

Next, the potential energy is given as  

 

with the angular 
1
 - 

2
 of the torsion spring. The Lagrangian follows as 

 

 

The generalized forces are  

 

The application of the Lagrange Formalism leads to the equations of motion.  

Figure 2: Torsion drive.
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2.2 Variational Principle and Lagrange's Equations 

There exists an alternative way of deriving Lagrange's equations which gives new insights. This method 
is based on Hamilton's variational principle: The motion of a system takes place in such a way that the 
integral  

is an extremum. The work W of the external forces is given by  

In other words, Hamilton's principle says that out of all possible ways a system can change within a 
given finite time t

2
 - t

1
, that particular motion which will occur, for which the integral is either a 

maximum or a minimum. The statement can be expressed in mathematical terms as  

in which  denotes a small variation. This variation results from taking different paths of integration by 
varying the generalized coordinates q

j
. Note, no variation takes place with respect to the time t. Caused 

by the variations q
j
 we have virtual displacements x

i
 of the coordinates x

i
. This leads to  

and  

A first fact is that the product  

is the work done on the system by the external forces, when the coordinates q
j
 change a virtual amount 

q
j
. The other generalized coordinates are remaining constant. For example, if the system is a rigid body, 

the work done by the external forces when the body turns through an angle  about a given axis is  

(23)

(24)

(25)

(26)

(27)

(28)

(29)
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where M is the torque about the axis. In this case, M is the generalized force associated with the angle . 
The combination of (25) and (27) gives  

Let Q
j
 be a generalized force which is derivable from a potential energy function V . In this case, we get 

by integration by parts  

The combination of (30) and (31) gives  

where the summation goes over the generalized forces which are not derivable from a potential function. 
The Lagrangian  

is a function of q
j
 and . We have 

 

and by integration by parts  

For fixed values of the limits t
1
 and t

2
, the variation q

j
 = 0 at time t

1
 and t

2
. Hence, we get 

 

If all the generalized coordinates are independent, then their variations are all independent, too. 
Therefore, each term in the bracket must vanish in order that the integral itself vanishes. Thus,  

(30)

(31)

(32)

(33)

(34)

(35)

(36)
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Remark 7 Similar equations were first derived by Euler for the general mathematical variational 
problem. Therefore, the equations (37) are called Euler Lagrange equations, too.  

Remark 8 The variational approach leads to the Euler–Lagrange equations even when relation (23) 
does not give a minimum. The minimum requirement is always satisfied if L = T - V holds and V is 
independent of the velocities (or if V depends linearly on the velocity).  

2.3 State Functions 

As mentioned above the value of the Lagrangian at a given instant of time is a function given by the 
state of the system at that time, and not on the history. Such functions are called state functions. 
Examples are the total energy of the system and other closely related functions. The are of central 
importance in the characterization of physical systems. For example, let dW be a differential change in 
energy produced by a differential displacement dq in the variable q. Then we have  

with the generalized force Q – see equation (28) also. The product of the variables Q and q describes an 
energy relation, which is usually a state function. It contains much valuable information about the 
system. Unfortunately some physical effects (dissipation, hysteresis, inputs) must be excluded from 
systems if they are to be described by state function. So, we restrict our attention to conservative 
systems. This is not a serious drawback, because this formulation is mainly used for the coupling of 
electrical and mechanical part. Fortunately, these couplings are derivable from state functions.  

The state of the dynamical system can be described either by n generalized coordinates q
i
 and its 

time derivatives 
i
 or by the q

i
 and the n generalized momenta p

i
. The associated 2n dimensional space is 

called the phase space. A pair q
i
 and p

i
 is called canonically conjugate variables. Associated with every 

set of independent variable q
i
 and p

i
 is a set of dependent variables Q

i
 and 

i
. So, for a mechanical system 

we have four different kind of variables:  

q, the generalized mechanical coordinate, it is also called mechanical displacement,  
, the generalized mechanical velocity, it is also called mechanical velocity,  

Q, the generalized mechanical force, a mechanical force depends upon the position only 

p, the generalized mechanical momenta – see equation (47), a mechanical momenta depends 
usually upon the velocity only 

We have mentioned that there are Lagrangian which cannot be expressed as the difference of the kinetic 

(37)

(38)
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and potential energy. Nevertheless it is possible to decompose L as the difference of two functions. To 
show this we express the differential of the Lagrangian  

as  

From this expression L can be calculated by integration. Since L is a state function, a arbitrary path for 
the integration can be chosen. For example the 

j
 are constant for integration with respect to q

j
 and the q

j
 

are constant for integration with respect to 
j
. Furthermore, these integrations can be performed for a 

specific value of t. We get  

and L is decomposed in two functions. The first function is exactly the definition for the negative of the 
potential energy. Therefore a generalized force Q

j
 associated to a potential is defined as  

and the potential energy is defined as  

This clarifies the introduction of the potential energy in equation (31). The second term  

is a function of the final values of q
j
 and the velocities. This acts as a definition of the generalized 

momenta  

(41)

(42)

(43)

(44)

(45)

(46)

Page 13 of 54Modeling of Electromechanical Systems

06-11-2008file://C:\user\course2\modeling\LagrangeMethod\Modeling of Electromechanical System...



and the so called kinetic coenergy  

Remark 9 At this point the reason for this terminology seems to be artificial. The analogous discussion 
for electrical systems shows that the introduction of the kinetic coenergy is a direct consequence of the 
definition of the magnetic coenergy.  

Remark 10 In this concept the definition of the kinetic energy has the general form 

whereas the definition of the kinetic energy has the general form  

As a consequence, the Lagrangian becomes simply  

If the masses of a mechanical system are constant, then the kinetic coenergy T
' and the kinetic energy T 

are equal. For example suppose a mass m with velocity . The momenta is given as p = m  and we 
obtain the kinetic coenergy  

which is equal to the kinetic energy T.  

2.3.1 Example I 

The example should illustrate the calculation of the kinetic and potential energies. Consider the mass–
spring system given in figure (3).  

(47)

(48)

(49)

(50)

(51)

(52)
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In the equilibrium (zero force F) the length of the springs are given with a and b. Then, the coordinates 
x

1
 and x

2
 measure the deviation from the equilibrium. If x

1
 and x

2
 are specified, then the geometric 

configuration of the system is completely determined. So, we have found the generalized coordinates x
1
 

and x
2
 and their associated velocities v

1
 and v

2
. To find the potential energy the equation (45) is used, 

thus 

 

where  

 

The potential energy is  

 

This integral is evaluated by holding x2
'
 = 0 and displacing x1

'
 from 0 to x

1
, then holding x1

'
 = x

1
 and 

displacing x2
'
 from 0 to x

2
. This results in  

 

The kinetic coenergy can now be derived using equation (48), which is 

Figure 3: Example.
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The momenta are  

 

and we get  

 

The line integral is  

 

2.3.2 Example II 

The upper point of the ideal pendulum of length l is constrained to move at a constant angular velocity 
around a circle of radius r.  

At time t = 0 the upper point of the pendulum is located at the bottom of its circular path. We assume 
that there is no friction. If  is specified, then the position of the pendulum is completely determined. 
So,  is the generalized coordinate and  the associated velocity. In terms of the Cartesian–coordinate 
system the kinetic coenergy of the mass m is given by 

 

The coordinates x and y are expressed in terms of the generalized coordinate, thus  

 

Using the first time derivatives  

  
Figure 4: Pendulum on a circle.
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we have  

 

The potential energy is associated to the gravitational force, thus  

 

This defines the Lagrangian with  

 

The application of the Lagrange formalism leads to the equation of motion  

 

2.4 Energy of Mechanical Systems 

Let us assume that equality of the kinetic energy T and the kinetic coenergy T
' . Then, the difference 

between the usual Lagrangian  

and the energy E = T + V is just the sign of V . Is there some general way to calculate E from the 
knowledge of L? We start with a definition  

and prove, whether E satisfies the conditions to be an energy (state function) or not. The candidate E 
meets the relations  

(53)

(54)

(55)
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If no external generalized forces Qi
e exist and L is time independent than the relation 

 

will be met. In this case, E is a constant of motion like the energy. However we have not established, 
whether E is in fact the energy T + V . We state without proof that if T is a homogenous quadratic 
function of 

i
, then E will be the energy [4]. Note, a function f is called homogenous quadratic, iff the 

condition  

is satisfied. The conditions for T to be homogenous quadratic in 
i
 are: 

 

The potential V is independent of 
i
. 
 

The transformation from the Cartesian coordinates to the generalized coordinates is time 
independent.  
L = T - V is time independent.  

2.5 Legendre Transformations 

The Lagrangian can be used to formulate the equations of motion of dynamical systems. In this section 
we discuss alternate state functions. The Hamiltonian or total energy can be obtained from the 
Lagrangian by a transformation of the variables. The generalized velocity 

i
 can be replaced by the 

associated variable p
i
 to get the Hamiltonian H which is a function of q

i
 and p

i
. Using a Legendre 

transformation to define H gives  

Taking the total differential of H gives either – see equation (47)  

(56)

(57)

(58)

(59)
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or  

In case of no external forces we have  

and we can obtain  

Finally, the comparison of (62) and (60) gives the Hamilton's equations of motion  

The Legendre transformation offers the definition of other state functions, e.g.  

or  

Usually these relations are not used in the modelling. Nevertheless the are of some theoretical interest. 
We have established that the Hamiltonian H and the total energy E are equal besides some less 

restrictive conditions – compare equation (54) and equation (58). Now, the quantity H
' is defined to be 

the total coenergy  

and it is called the co–Hamiltonian. Moreover, the quantity L
' is called the co–Lagrangian in defined as 

 

(60)

(61)

(62)

(63)

(64)

(65)

(66)

(67)
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Remark 11 In this concept the definition of the potential energy has the general form 

whereas the definition of the potential coenergy has the general form  

2.6 Case Studies 

2.6.1 Atwood's Machine 

Modelling and Simulation  

2.6.2 Car and Beam 

Modelling and Simulation  

2.6.3 Double Pendulum 

frictionless: Modelling and Simulation  
with friction: Modelling and Simulation  

2.6.4 Bead and Hoop 

Modelling and Simulation  

2.6.5 Ball on a Wheel 

Modelling and Simulation  

2.6.6 Two dimensional truck model 

Modelling and Simulation  

3 Electrical Systems 
Section 2 has presented a modeling technique for mechanical systems by means of energy terms. For the 
coupling of electrical and mechanical systems, we have to extend this idea to electrical systems. We 
consider networks made up of resistors, capacitors, inductors, and sources. Resistors and sources are 
called the static terminals of the network. Capacitors and inductors are called the dynamic terminals. 
Later we discuss briefly the nature of these objects, called the branches of the circuit. At present, it 
suffices to consider them as devices with two terminals. The network is formed by connecting together 
various terminals. The connection points are called nodes. To find a mathematical description of the 

(68)

(69)
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network, we define a graph which corresponds to the networks. This graph G =  consists of the 
following data:  

A finite set N of points called nodes. The number of nodes is a.  
A finite set B of lines called branches. The number of branches is b. A branch (or port) has exactly 
two end points which must be nodes.  

A current state of the network will be some vector iT = , where i
k
represents the current flowing 

through the k–branch at a certain moment. Kirchhoff's current law states that the amount of current 
flowing into a node at a given moment is equal to the amount flowing out. For a node k, we get  

The sum is taken over all branches and d
kl
 is defined as : 

 

d
kl
 = 1: if node k and branch l are connected and the direction of i

l
 to node k is positive 

 

d
kl
 = -1: if node k and branch l are connected and the direction of i

l
 to node k is negative  

d
kl
 = 0: otherwise  

Next, a voltage state of the network is defined to be the vector uT = , where u
l
 represents the 

voltage drop across the l–th branch. Kirchhoff's voltage law states that there is a real function on the set 
of nodes, a voltage potential, so that  

holds for each branch l. The power P of a network is a real function defined as  

A current iT =   Rb, and a voltage uT =   Rb are said to be admissible, if they obey 
the current law (70) and the voltage law (71). Telegen's theorem offers a very efficient way to 
characterize admissible currents and voltages. We state without proof [5]:  

Theorem 1 (Telegen) The relation 

is met for any admissible current i and any admissible voltage u of a Kirchhoff network with graph G = 
.  

A direct consequence is that the power is zero for any admissible current i and any admissible voltage u 

(70)

(71)

(72)

(73)
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of a Kirchhoff network.  

3.1 Energy and Coenergy of Simple Devices 

Now, we describe in mathematical terms the three different types of devices in the network; static 
terminals, capacitors, and inductors.  

3.1.1 Static terminals 

Each static terminal S imposes a relation  

on the current i and the voltage u of its branch. Typical examples are  

the linear resistor u = Ri,  
the voltage source u = constant, i arbitrary and  
the current source i = constant, u arbitrary.  

Next, we introduce functions Pu , Pi  such that the relations 
 

are met. Note, the physical dimension of these quantities is Watt. If u and i has the same direction, that 
means Pu + Pi is positive, then we will have dissipated power. Let us compare the definition  

of the Rayleigh potential PR of dissipative forces with the relations (75). For the dissipative forces of a 
mechanical system, we can define powers Pu and Pi in the way  

If 
j
 and Q

j
 are directed in opposite, then Pu, Pi, P will be positive functions. This is the usual convention 

of the direction of forces and velocities of dissipative forces. Taking the example  

then short calculations show  

(74)

(75)

(76)

(77)

(78)

(79)
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and  

Relations (75) and (77) look very similar. The difference is just the sign. If u and i are directed in the 
same direction, then the power Pu + Pi > 0. This is a usual convention in electrical networks. For this 
similarity, we call the powers of the electrical network generalized potentials, too. For example, a linear 
resistance satisfies u = Ri, which leads to  

The resistor is a dissipative element. Hence i and u of a resistor have the same direction.  

The relations (81) allow a simple interpretation of the quantities Pu , Pi . 

Remark 12 Figure (6) shows a nonlinear resistor law. We can deduce that Pi and Pu can be interpreted 
as areas above and beyond the curve.  

(80)

(81)

Figure 5: Resistor.
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A voltage source satisfies u = u
0
, which leads to 

Note, u and i don't have the same direction. Hence Pi < 0. 
 

Analogous, a current source satisfies i = i
0
, which leads to 

3.1.2 Dynamic Devices 

An inductor or capacitor does not impose conditions directly on the state, but defines how the state in 
that branch changes in time. In particular a capacitor and an inductor link the charge  with the voltage u 
and the flux  with the current i by the nonlinear relations  

Their dynamics is given by the relations  

for a capacitor and an inductor, respectively. The combination of (84) and (85) immediately leads to  

Figure 6: Interpretation

(82)

 
Figure 7: Voltage source.

(83)

Figure 8: Current source.

(84)

(85)

(86)
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Remark 13 A linear capacitor is given by  = f  = Cu, which leads to the relation 

Remark 14 A linear inductor is given by  = g  = Li, which leads to the relation 

Now, let us introduce the energy W  of the capacitor and the energy W of the inductor. We assume that 
there exist functions W , W  such that  

or equivalently  

is met. The prime denotes the variable of integration. One gets  

and  

Remark 15 Here, the coordinates  and  are considered as independent variables.  

Remark 16 The relations 

motivate the interpretation of the charge and the flux linkage as ”position” coordinates. The 

(87)

(88)

(89)

(90)

(91)

(92)

(93)
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associated velocities are the currents and the voltages. Such an interpretation is sometimes used in 
modeling, see [?].  

In a similar way, we can define dual objects Wu, Wi with 

 

which are called electrical coenergies. They meet the relations  

and  

as well as  

Remark 17 Here, the coordinates u and i are considered as independent variables.  

For example, a linear capacitor satisfies  = Cu, which leads to the energy  

and the coenergy  

For linear capacitors, the energy and the coenergy are equal. This fact does not hold for nonlinear 

(94)

(95)

(96)

(97)

(98)

(99)

 
Figure 9: Capacitor.
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devices. Analogous, a linear inductor satisfies  = Li, which leads to the energy 

and the coenergy  

3.1.3 Example 

Simulation models of MOS–FET devices take into account that the charge storage can be described by 
voltage depending capacitors  

 

If the voltage u drop across the bulk–drain branch is positive, then we have the relation for the capacitor 

 

Then, the energy Wq and the coenergy Wu are given as: 
 

 

 

3.2 Equations of Motion of Simple Networks 

As mentioned above, a simple network is built up by three types of terminals. Therefore, the set B can 
be subdivided into 3 disjoint sets L, C and S of subsets of B in such a way, that the sets L, C, S contain 
the inductors, the capacitors and the static terminals, respectively, and the relation B = L  C  S is met. 

Remark 18 For our proposed type of electrical networks, the current in the inductors and the voltage 

(100)

(101)

Figure 10: Inductor.
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drops along the capacitors, via Kirchhoff's laws and the laws of the static terminals, determine the 
currents and the voltages in all the branches. We call such networks simple. If capacitors are connected 
in parallel or inductances are connected in series, then such devices should be combined to one single 
device.  

All voltages  are expressed as functions of the voltages uC
T =  of the 

capacitors and the currents iL
T =  of the inductors. In a similar way, we express all 

currents as functions of u
C
 and i

L
. This gives two maps  

Without saying, , and meet Telegen's theorem. The total coenergy of the network 
is defined by  

We will follow the convention that sums over C or L means summation over all capacitor or inductor 
branches. Further, we get  

and  

with k  C , l  L. We define the quantities  

and  

which are powers. They are needed for the derivation of the equations of motion. Telegen's theorem can 
be rewritten as  

Please remind that sums over C or L means summation over all capacitor or inductor branches. At a 

(102)

(103)

(104)

(105)

(106)

(107)

(108)
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given time t
0
 the circuit is in a particular current   Rb – voltage   Rb state. In this 

way, a curve is obtained, depending on the initial state of the circuit. The components i
k
, u

k
, k  B of this 

curve must satisfy the conditions imposed by Kirchhoff's laws and the static terminal laws. In addition, 
at a given time the components du

k
/dt and di

k
/dt of the tangent vectors of the curve must satisfy the 

relations (104) and (105). A curve satisfying these conditions is called a trajectory. The coordinates i
k
, u

k
, 

k  B has a property in common with the coordinates x
i
 of a specific particle of a mechanical system. 

They describe the system completely but in general they are not independent from each other due to the 
restrictions. For this reason, we have introduced the generalized coordinates q

j
. In the present case, the 

currents through the inductors and the voltage drops along the capacitors play the analogous role. As 
supposed in remark (18), they determine the system completely. Moreover, they are independent from 
each other.  

Next, we are going to state this set of equations of motion for simple electrical networks. Let u be 
any admissible voltage. Then, the time derivative du/dt fulfills the Kirchhoff voltage law and is an 
admissible voltage, too. Hence, Telegen's theorem tells us  

for any admissible current i. We rewrite this as  

From the Leibnitz rule we get  

This leads to  

and – see equations (106) and (107) –  

PL and Pu are functions of the currents through the inductors and the voltage drops along the capacitors. 
Hence, the chain rule gives  

(109)

(110)

(111)

(112)

(113)

(114)
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and  

Since du
k
/dt and di

k
/dt can take any value, 

 

Taking into account  

we get  

and  

Using the equation (108) gives  

The equations (118) and (120) state the set of equations of motions for simple electrical networks – see 
[5].  

Remark 19 The right hand sides of the differential equations (118) and (120) are functions of all u
C,k

, 
i

L,k
. This fact coincides with remark (18).  

Remark 20 The set of the differential equations (118) and (120) is a set of first–order differential 
equations.  

3.2.1 Example I 

Suppose we have the simple electrical network given in figure 11.  

(115)

(116)

(117)

(118)

(119)

(120)

Page 30 of 54Modeling of Electromechanical Systems

06-11-2008file://C:\user\course2\modeling\LagrangeMethod\Modeling of Electromechanical System...



First we will calculate the maps  and  as introduced in (106) and (107). This means nothing that all 
voltages and currents must be expressed as functions of the voltages across the capacitors and currents 
through the inductances. From the voltage and current laws it follows 

 

and  

 

Now, the power PC  follows with 
 

 

and Pu  is given by 
 

 

The calculation of the total coenergy of the network leads to  

 

Moreover we have  

  
Figure 11: A simple electrical network.
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and  

 

The evaluation of  

 

leads to  

 

and  

 

The evaluation of  

 

leads to  

 

3.2.2 Example II, Cuk–Converter 

The Cuk–Converter is a special case of a dc–dc converter, which is widely used in switch–mode dc 
power supplies and dc motor drive applications. As shown in figure (12), often the input of such 
converters is an unregulated dc voltage U

e
. Switch–mode dc–dc converters are used to convert the 

unregulated dc input into a controlled dc output u
C,2

 at a desired voltage level. The output voltage u
C,2

 
may be higher or lower than the input voltage.  
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For the analysis, the switch is treated as being ideal and the capacitive elements C
1
, C

2
 have no losses. 

The losses in the inductances L
1
, L

2
 are modelled by resistors R

1
, R

2
. The dc input voltage U

e
 to the 

converter is assumed to have zero internal impedance. The output is assumed to supply a load that can 
be represented by an equivalent resistor R. The control input u is called the duty ratio u, 0 < u < 1 and 
this quantity specifies the ratio of the duration of the switch S in position 1 to the fixed modulation 
period T.  

If the switch S is in position 0, then the circuit can be divided in two parts as shown in figure (13).  

First, we will calculate the maps  and  as introduced in (106) and (107). From the voltage and current 
laws it follows 

 

and  

 
Figure 12: Cuk–Converter.

Figure 13: The switch S is in position 0.
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Trivial equations are not displayed. The proposed modeling technique requires the quantities  

 

and the total coenergy of the network  

 

The evaluation of  

 

leads to  

 

and  

 

The evaluation of  

 

leads to  
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and  

 

If the switch S is in position 1, than the circuit can be divided in two parts as shown in figure (13).  

First we will calculate the maps  and  as introduced in (106) and (107), again. From the voltage and 
current laws it follows 

 

and  

 

Trivial equations are not displayed. The proposed modeling technique requires the quantities  

 

and the total coenergy of the network  

 
Figure 14: The switch is in position 1. 
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The evaluation of  

 

leads to  

 

and  

 

The evaluation of  

 

leads to  

 

and  

 

Generally a PWM controlled converter like the uk converter is described by two systems of differential 
equations of the form  

for i = 0, 1, . . . with the smooth vector fields a
1
, a

2
 and the duty ratio u, 0 < u < 1. For the uk converter 

we have  

(121)
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with the state xT = . The duty ratio thus specifies the ratio of the duration of the 
switch S in position 1 to the fixed modulation period T (see Fig. (15)).  

From the theory of differential equations it is a well known fact that the state variables of a system  = f
 with piecewise continuous inputs u are continuous [5]. Therefore, the two systems of (121) are 

connected by the conditions 

 

Under the assumption that the switching frequency is much higher than the natural frequencies of the 
converter system and the switches are realized with common power semiconductor devices, we can 
derive the so called average model for the PWM controlled converter (121) in the form  

with the average state vector x and the duty ratio u – see [4]. Hence, the average model for the uk 
converter reads as  

  
Figure 15: Duty ratio of a PWM controlled system.

(122)
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with the state xT = .  

More information  

3.3 The Energy of Electrical Systems 

The energy of all capacitors and inductors of an electrical network is given by  

Using Telegen's theorem we get  

and  

These relations may be interpreted in the way that in a circuit the energy in the inductors and capacitors 
varies according to the power dissipated in the resistors and supplied by the sources.  

4 Electromechanical Systems 

4.1 Introduction 

The overall idea of the coupling of electrical and mechanical systems will be described by the following 
example. The system consists of a capacitor realized by two plates, one is fixed and the other is movable 
but attached to a spring – see figure (16).  

(123)

(124)

(125)

(126)

  

Page 38 of 54Modeling of Electromechanical Systems

06-11-2008file://C:\user\course2\modeling\LagrangeMethod\Modeling of Electromechanical System...



Further, we know that the capacitance can be described by C  = k/x. If we change the position x of the 
moveable plate, then a force F will take place. This force can be calculated from the equation 

In other words, the rate of energy of the capacitor is equal to the difference of the mechanical power 
supplied by the force and the electrical power i

C
u

C
 supplied by the electrical part. This energy relation is 

based on the choice  and x for the independent variables. For electrical engineers it is more common to 
use the voltage. Therefore, using the relation  

we get  

and finally  

Hence, the force F of the mechanical part is coupled to the electrical part by the coenergy. For the 
present example, it follows  

and  

In principle, we can apply Newton second law for the moveable plate with mass m  

Figure 16: Example of an electromechanical system.

(127)

(128)

(129)

(130)

(131)

(132)

(133)
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which takes into account the law of the linear spring. On the other hand, we know that F is related to the 
coenergy by equation (130). This fact is a motivation for the introduction of an extended Lagrangian  

with Lagrangian L = T - V of the mechanical part.  

Remark 21 For simplicity, we have assumed that the kinetic energy is equal to the kinetic coenergy.  

For our example the equations of motion of the mechanical part are given by  

with  

We get  

The equation for the electrical part (a capacitor in series with a resistor) is given by  

with  

We get  

4.2 Mechanical Forces of Electromechanical Coupling 

The first step in analyzing a complicated electromechanical system by a conservation of energy 
approach is to reduce the system containing electromechanical coupling terms to a minimum. To do this, 
separate out all purely electrical parts and all purely mechanical parts of the system including losses. 
This separation procedure is carried out to the extent that each electrical terminal pair is coupled to one 
energy store, either magnetic or electrical. Any internal interconnections between circuits that are 
coupled to different energy storages are included in the external electrical network. The mechanical 

(134)

(135)

(136)

(137)

(138)

(139)

(140)
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variables represented by the mechanical terminal pairs are those which affect energy storage in the 
electric and magnetic fields. The separation procedure results in the general conservative 
electromechanical coupling network in figure 17 in which there are n electrical terminals and m 
mechanical terminals pairs. Each electrical terminal pair will be coupled to either a magnetic field 
energy storage or an electric energy field storage.  

The total stored energy W in the coupling network is given by 

where W  is energy stored in electric fields and W  is energy stored in magnetic fields. We assume that 
W is state function and given by the instantaneous configuration of the system.  

Remark 22 Hysteresis can not be taken into account. Otherwise the assumption that W is a state 
function would be violated.  

Consider an electrical terminal pair coupled to the electrical field storage. When the  
i
 and q

i
 are 

specified independently, the current in the ith terminal is i
i
 = d  

i
/dt and the voltage u

i
 at the ith terminal 

is given by the internal constraints. Next, consider an electrical terminal pair that are coupled to 
magnetic field storage. When the 

i
 and x

i
 are specified independently, the voltage in the ith terminal is 

u
i
 = d

i
/dt and the current i

i
 at the ith terminal is given by the internal constraints. It should be mentioned 

that instead of specifying the  
i
 and 

i
 the voltages u

i
 and the currents i

i
 could have been considered as 

independent. This is in accordance to the results obtained in section 3.  

The next problem is to find the generalized force due to the electromechanical coupling. Since the m 
mechanical terminal pairs are characterized by m independent variables, it is possible to consider each 
mechanical terminal pair individually to find the force. Let us define the generalized force Qk

e – see 

figure 17 – as the force applied to the kth mechanical coordinate by the coupling network. Qk
e can be 

found by considering that an arbitrary placement dq
k
 of the kth mechanical coordinate during the time dt 

takes place. All other mechanical coordinates are fixed and the electrical variables may change in 
accordance to the internal constraints due to the electrical network. This means that only one electrical 
variable at each electrical terminal can be changed arbitrary. During the displacement the conservation 

 
Figure 17: Simplification of electromechanical systems.

(141)
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of energy must hold. The various energies involved in the arbitrary displacement are  

energy supplied at electrical terminals: 

energy supplied at the kth mechanical terminal: 

change in stored electrical and magnetic energy of coupling field: dW  

All lossy elements are either part of the purely electrical network or of the purely mechanical network. 
Hence, the conservation of energy requires that the sum of the input energy must be equal to the change 
in stored energy  

Then, the generalized force applied to the kth terminal is  

We assume the all electrical energy storage will be in capacitances and all magnetic field storage will be 
in inductances. Thus, the problems of electrical and magnetic field coupling can be treated separately.  

4.2.1 Mechanical Forces Due the Magnetic Field Coupling 

In such cases the coupling network consists of n coils – see Figure 18 for an example with one coil.  

The conservation of energy establishes that the energy input from all sources is stored as magnetic field 
energy 

(144)

(145)

  
Figure 18: The coupling network is represented by a coil.
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or  

which is in accordance to equation (90). The energy stored in the magnetic field coupling can be 
determined by bringing all system variables to their final values in an arbitrary manner. For example all 
flux linkages are hold at zero (W  = 0) and the mechanical coordinates are assembled, then establish the 
flux linkages with the mechanical coordinates held at their final positions. For this case, we get  

where W  is evaluated as the integral of id  for any fixed q
i
. Now that the stored magnetic energy has 

been determined, the mechanical forces due to the magnetic field coupling can be calculated. Using the 
relation u

i
 = d

i
/dt and the equation (144) we get  

Since the 
i
, i = 1, . . . , n and the q

k
 are independent variables, the differentiation of dW  yield 

 

All other q
i
 are hold constant. Taking into account equation (148) we get 

 

and finally  

This relation states how the generalized force applied to the kth terminal depends on the magnetic 
energy in terms of the flux linkages at a certain choice for the mechanical coordinates. In most cases it is 
preferred to express this relation in terms of the currents through the magnetic coils. Currents are usually 
used in the description of the electrical network. This requires the introduction of the coenergy. We start 
with the equation (151) and integrate it by parts 

(146)

(147)

(148)

(149)

(150)

(151)

(152)
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where the second term is called the magnetic coenergy  

– see equation (94). Substitution of equation (154) into (152) leads to the desired expression.  

The several forms of the generalized electromechanical coupling force Qk
e applied to the kth terminal by 

a magnetic field as found by an arbitrary displacement of the kth mechanical coordinate q
k
 are 

summarized in Table (156).  

Remark 23 Suppose the force Qk
e = Wi/ q

k
. This force is independent of the changes in i

i
 and 

i
 which 

take place during the arbitrary displacement. Consequently this expression is valid regardless of how i
i
 

and 
i
 vary, if the variation is compatible with the internal constraints given by the electrical network.  

Remark 24 From a mathematical point of view the partial derivative is taken with respect to q
k
 holding 

all other q
i
 and the i

i
 constant. The holding of i

i
 constant has nothing to do with electrical terminal 

constraints.  

(153)

(154)

(155)

(156)
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Remark 25 Suppose a electrical linear system. That means the fluxes are related to the currents via 
i
 = 

L
i
i

i
. Then we have 

and  

Thus for electrical linear systems the stored magnetic energy is equal to the magnetic coenergy.  

4.2.2 Mechanical Forces Due the Electrical Field Coupling 

We have determined the mechanical forces produced by the magnetic field coupling. A similar 
development can be made for finding the mechanical forces due to the electrical coupling. In such cases 
the coupling network consists of l capacitances. The conservation of energy establishes that the energy 
input from all sources is stored as electric field energy  

or  

which is in accordance to equation (90). The energy stored in the electrical field coupling can be 
determined as  

where W  is evaluated as the integral of ud  for any fixed q
i
. For the electrical field case, just as it was 

for the magnetic field case, it is the interchange of energy among electrical and mechanical sources and 
the stored electrical energy that is a manifestation of energy conversion. This, and the fact that the stored 
energy is a state function which is determined by the instantaneous values of the variables, allows the 
use of the stored electrical energy to find the mechanical forces. Using the relation  

i
 = di

i
/dt and the 

equation (144) we get  

(157)

(158)

(159)

(160)

(161)
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Since the  
i
, i = 1, . . . , l and the q

k
 are independent variables the differentiation of dW  yield 

 

Taking into account equation (161) we get  

and finally  

This relation states how the generalized force applied to the kth terminal depends on the electrical 
energy in terms of the charges at a certain choice for the mechanical coordinates. In most cases it is 
preferred to express this relation in terms of the voltages along the capacitors. Voltages are usually used 
in the description of the electrical network. Like for the magnetic field case, this requires the 
introduction of the coenergy. We start with the equation (160) and integrate it by parts  

where the second term is called the electrical coenergy  

– see equation (94). Substitution of equation (167) into (165) leads to the desired expression.  

The several forms of the generalized electromechanical coupling force Qk
e applied to the kth terminal by 

a electrical field as found by an arbitrary displacement of the kth mechanical coordinate q
k
 are 

summarized in Table (169).  

(162)

(163)

(164)

(165)

(166)

(167)

(168)
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4.3 Equations of Motion 

In the previous sections we have defined the generalized coordinates and state functions for different 
kinds of physical domains separately. Now, the way of modelling is given as follows  

mechanical part 
1. Select a suitable set of coordinates qT =  to represent the mechanical 

configuration of the system.  

2. Obtain the kinetic coenergy T
' and the Rayleigh function PR as a function of the time 

derivatives.  
3. If the system is conservative, find the potential energy V as a function of the coordinates, or, 

if the system is not conservative, find the generalized forces Qj
e.  

electrical part: 
1. The generalized coordinates are chosen as the currents iL

T =  through the 

inductances and the voltages uC
T =  along the capacitors.  

2. Obtain the total electric coenergy 

as a function of the mechanical coordinates and the electrical coordinates and the sources u
0
, 

i
0
.  

3. Calculate the power quantities 

(169)
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Define the extended Lagrangian 

Then, the equations of motion of the mechanical part are given by  

and the equations for the electrical part are  

4.4 Electrical Drives 

4.4.1 Elementary Machine 

The purpose of this section is to derive the magnetic coenergy of an elementary machine. This will act 
as starting point for the considerations on DC–drives. Figure 19 presents an elementary two pole 
machine with one winding on the stator and one on the rotor.  

These windings are distributed over a number of slots so that their magnetomotive force can be 
approximated by space sinusoids. The stator and rotor are concentric cylinders, and slot openings are 
neglected. On these assumptions the stator and rotor self–inductances L

ss
 and L

rr
 are constant. The stator–

rotor mutual inductance depends on the angle between the magnetic axes of the stator and rotor 

Figure 19: Elementary machine.
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windings. The mutual inductance is a positive maximum when  = 0 , is zero when  = ± /2, and is a 
negative maximum when  = ± . On the assumptions of sinusoidal waves and a uniform air gap, the 
space–wise distribution of the air–gap flux in sinusoidal, and the mutual inductance is 

L
sr
 is the value of L when the magnetic axes of the rotor and the stator are aligned. In a linear system, the 

relationship between the fluxes and currents are given with  

The coenergy in the magnetic field in the air gap is given by  

and we have  

4.4.2 DC–drive 

For our purpose it is suffices to say that a DC–drive is an elementary machine with commutator. The 
task of the rotating commutator is to convert the AC– voltage generated in each rotating armature coil to 
DC in the external armature terminals by means of the stationary brushes to which the armature leads 
are connected. Moreover, the magnetic axes of the armature winding is perpendicular to the magnetic 
axes of the field winding. See [2] for a detailed introduction in the theory and application of DC–drives. 

For convenience we assume a sinusoidal flux density wave in the air gap. Then, we apply the 
coenergy equation (178)  

with the external armature current i
A
, the exciting current i

E
, the angle  between the magnetic axes of 

rotor and stator, the inductances L
A
 and L

E
, and the coupling constant c. For DC–generators the plus sign 

has to be taken, the minus sign is related to a DC–motor. The losses in the windings are taken into 
account using the resistors R

A
 and R

E
. It follows the torque with  

(175)

(176)

(177)

(178)

(179)
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Next the process of commutation has to be taken into account. The commutator ensures that the angle  

between the air–gap flux and the armature magnetomotive force is 90  electrical degrees. Hence, the 
commutation leads to  

The Figure 20 shows a schematic representation of the separate excited DC–drive.  

The derivation of the equations of motion follows the following procedure using the coenergy of the 
magnetic field of a DC–drive before commutation – see equation (179): 

Mechanical part and armature current part: The derivatives with respect to the coordinates , i
E
 

and the time have to be carried out. Finally, the commutator condition requires sin  = 1.  
Exciting current part: First, the commutator condition requires sin  = 1. Then, the derivatives 
with respect to the coordinates , i

E
 and the time have to be carried out.  

Separate excited DC—drive: Next, this procedure is applied to a simple DC–drive with load. The 
extended Lagrangian is the sum of the mechanical Lagrangian and the magnetic coenergy (coordinates 
i

A
, i

E
)  

At this state the mechanical rotor angle  and the angle  between the magnetic axes of rotor and stator 
are the same. This leads for a DC–motor  

with the inertia J. Next, we apply the relations (173) and get  

(180)

(181)

 
Figure 20: Separate excited DC-drive.

(182)

(183)
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with the external load M
L
. The commutation requires sin  = 1 which gives 

 

Here, the rotor angle  is the generalized coordinate of the movement and  is different from . We 
assume constant excitement – that means i

E
 = constant – for the derivation of the equations for the 

electrical part. Hence, we have  

with  

Finally, we get  

and the commutator conditions  = /2 leads to  

Shunt DC—drive and Series DC—drive: Other DC–drives of interest are the shunt DC–drive with u
A
 

= u
E
.  

This has no influence on the magnetic coenergy, thus equation (179) is still in force. A schematic figure 
of the series DC–drive is shown in figure 22. The condition i

A
  = i

E
 is in force, which gives the magnetic 

(184)

(185)

(186)

(187)

(188)

(189)

 
Figure 21: Shunt DC-drive.
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coenergy – see equation (179) 

 

4.5 Case Studies 

4.5.1 Ward–Leonard drive 

Modelling and Simulation  

4.5.2 Ball in a Magnetic Field 

Modelling and Simulation  

4.5.3 Electromagnet 

Modelling and Simulation  

4.5.4 Relay Device 

The relay shown in figure 23 is made from infinitely permeable magnetic material with a moveable 
plunger, also of infinitely permeable material.  

 
Figure 22: Series DC–drive.
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The height of the plunger is much greater than the air–gap length (h » g). The magnetic coenergy is 
defined by 

 

Thus, the calculation of L  is required. Because of the high permeability the flux is confined almost 
entirely in the core. The relationship between the magnetomotive force iN (N is the number of turns) and 
the magnetic field intensity in the core H

c
, in the plunger H

p
, and the gap H

g
 is given by  

 

with the mean core length l
c
. Further, the general relationship between B and H is given by 

 

 

This leads to  

 

with the flux density B
c
 in the core (uniform distributed over a cross section area A

c
 = ld of the core), the 

flux density B
g
 in the air gap (uniform distributed over a cross section area A

g
 = l  of the air gap), 

and the flux density B
p
 in the plunger. The field follows the path defined by the core, thus the relation  

 

holds. In the air gap and in the plunger the flux  is almost the same as in the core. Hence,  

 

This gives  

 

and  

 

The air gap cross section area is  

Figure 23: Relay with moveable plunger.
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which gives  

 

The magnetic energy follows with  

 

and the related force with  
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